
4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 1/19

netCDF

We are going to make an animated gif and not embarass a friend!
¶

You need to take your time. Every cell is important today. If you rush you will get yourself in trouble.

In [2]:

You are going to read in a netcdf file. Plot sea surface temperatures. Animate them for the year and turn in an
animated GIF.

The links to get the sea surface data don't always work. Be patient. WE DOWNLOADED THIS YESTERDAY.

Start here http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html#detail
(http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html#detail)
Every year this changes.
Now I go into the box on the lower left.
Scroll down to sea surface temperature man with 52. Click on it.
then click a year and it will download. Do not do this year! It is not a full year because we aren't done yet!
It is a 400mb file. It might be slow if you are on wifi
Now make sure it is saved in your working directory and we can open it. url is the file name.
It is just like the last packet!

In [3]:

You saved the file into "f". So if we print f we will see part of it. But remember the f is not the whole file but
more like a function that we can then call to get at the whole file. We will use "f." notation to learn about the
file. You know the drill!

The usual libraries
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

from scipy import stats
from matplotlib.backends.backend_pdf import PdfPages

%matplotlib inline

The new ones
import netCDF4
import cartopy.crs as ccrs
import cartopy.feature
from cartopy.util import add_cyclic_point
#import contextily as ctx

import datetime

file=('sst.day.mean.2019.nc')
f=netCDF4.Dataset(file)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1
2

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html#detail
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html#detail

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 2/19

In [3]:

So what do we have? We have 365 time steps of lat and long with sea surface temperatures at every day. so
lets try to pull it out. It is easy....

In [4]:

We are going to come back to the time values.

Now lets look at latitude.

<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF4_CLASSIC data model, file format HDF5):
 Conventions: CF-1.5
 title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolation Sea Surface Temperatur
e (OISST) Analysis, Version 2.1
 institution: NOAA/National Centers for Environmental Information
 source: NOAA/NCEI https://www.ncei.noaa.gov/data/sea-surface-temperature-optim
um-interpolation/v2.1/access/avhrr/ (https://www.ncei.noaa.gov/data/sea-surface-te
mperature-optimum-interpolation/v2.1/access/avhrr/)
 References: https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.h
tml (https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html)
 dataset_title: NOAA Daily Optimum Interpolation Sea Surface Temperature
 version: Version 2.1
 comment: Reynolds, et al.(2007) Daily High-Resolution-Blended Analyses for Sea
Surface Temperature (available at https://doi.org/10.1175/2007JCLI1824.1). (http
s://doi.org/10.1175/2007JCLI1824.1).) Banzon, et al.(2016) A long-term record of b
lended satellite and in situ sea-surface temperature for climate monitoring, model
ing and environmental studies (available at https://doi.org/10.5194/essd-8-165-201
6). (https://doi.org/10.5194/essd-8-165-2016).) Huang et al. (2020) Improvements o
f the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version v02r01,
submitted.Climatology is based on 1971-2000 OI.v2 SST. Satellite data: Pathfinder
AVHRR SST and Navy AVHRR SST. Ice data: NCEP Ice and GSFC Ice.
 dimensions(sizes): time(365), lat(720), lon(1440)
 variables(dimensions): float64 time(time), float32 lat(lat), float32 lon(lon),
float32 sst(time,lat,lon)
 groups:

<ipython-input-3-b30fe898003a>:1: DeprecationWarning: tostring() is deprecated. Us
e tobytes() instead.
 print (f)

<class 'netCDF4._netCDF4.Variable'>
float64 time(time)
 long_name: Time
 units: days since 1800-01-01 00:00:00
 delta_t: 0000-00-01 00:00:00
 avg_period: 0000-00-01 00:00:00
 axis: T
 actual_range: [79988. 80352.]
unlimited dimensions: time
current shape = (365,)
filling on, default _FillValue of 9.969209968386869e+36 used

<ipython-input-4-bcbaa96a41be>:1: DeprecationWarning: tostring() is deprecated. Us
e tobytes() instead.
 print (f.variables['time'])

print (f)

print (f.variables['time'])

1

1

https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/
https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/
https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/
https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/
https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://doi.org/10.1175/2007JCLI1824.1).
https://doi.org/10.1175/2007JCLI1824.1).
https://doi.org/10.1175/2007JCLI1824.1).
https://doi.org/10.5194/essd-8-165-2016).
https://doi.org/10.5194/essd-8-165-2016).
https://doi.org/10.5194/essd-8-165-2016).

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 3/19

In [5]:

There are 720 locations for latitude. Or 4 values every degree

Now lets look at longitude

In [6]:

longitude has 1440 values or twice as many as latitude as it goes around the whole globe

Now we can look at the actual sea surface temperature.

<class 'netCDF4._netCDF4.Variable'>
float32 lat(lat)
 long_name: Latitude
 standard_name: latitude
 units: degrees_north
 actual_range: [-89.875 89.875]
 axis: Y
unlimited dimensions:
current shape = (720,)
filling on, default _FillValue of 9.969209968386869e+36 used

<ipython-input-5-bd934758bff6>:1: DeprecationWarning: tostring() is deprecated. Us
e tobytes() instead.
 print (f.variables['lat'])

<class 'netCDF4._netCDF4.Variable'>
float32 lon(lon)
 long_name: Longitude
 standard_name: longitude
 units: degrees_east
 actual_range: [1.25000e-01 3.59875e+02]
 axis: X
unlimited dimensions:
current shape = (1440,)
filling on, default _FillValue of 9.969209968386869e+36 used

<ipython-input-6-3928fc27ac36>:1: DeprecationWarning: tostring() is deprecated. Us
e tobytes() instead.
 print (f.variables['lon'])

print (f.variables['lat'])

print (f.variables['lon'])

1

1

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 4/19

In [7]:

The sst is really cool. Think of it as 365 days of data, each in an array of values in the shape of 720 by 1440. So
for each day we will have a map of sea surface temperatures.

Can we actually look at some numbers?

In [8]:

So we can pull out numbers and look at them. They all come out in numpy arrays.

In [9]:

But we can pull them out and set them to a variable. We are not going to use Pandas and just leave everything
in numpy arrays for today. This might take a minute because you are putting 400 Mb of data into memory. Your
computer might get cranky and we might have to restart at some point.

<class 'netCDF4._netCDF4.Variable'>
float32 sst(time, lat, lon)
 long_name: Daily Sea Surface Temperature
 units: degC
 valid_range: [-3. 45.]
 missing_value: -9.96921e+36
 precision: 2.0
 dataset: NOAA High-resolution Blended Analysis
 var_desc: Sea Surface Temperature
 level_desc: Surface
 statistic: Mean
 parent_stat: Individual Observations
 actual_range: [-1.8 36.79]
unlimited dimensions: time
current shape = (365, 720, 1440)
filling on, default _FillValue of 9.969209968386869e+36 used

<ipython-input-7-1f712b81bbbd>:1: DeprecationWarning: tostring() is deprecated. Us
e tobytes() instead.
 print (f.variables['sst'])

 88.375, 88.125, 87.875, 87.625, 87.375, 87.125,
 -86.875, -86.625, -86.375, -86.125, -85.875, -85.625,
 -85.375, -85.125, -84.875, -84.625, -84.375, -84.125,
 -83.875, -83.625, -83.375, -83.125, -82.875, -82.625,
 -82.375, -82.125, -81.875, -81.625, -81.375, -81.125,
 -80.875, -80.625, -80.375, -80.125, -79.875, -79.625,
 -79.375, -79.125, -78.875, -78.625, -78.375, -78.125,
 -77.875, -77.625, -77.375, -77.125, -76.875, -76.625,
 -76.375, -76.125, -75.875, -75.625, -75.375, -75.125,
 -74.875, -74.625, -74.375, -74.125, -73.875, -73.625,
 -73.375, -73.125, -72.875, -72.625, -72.375, -72.125,
 -71.875, -71.625, -71.375, -71.125, -70.875, -70.625,
 -70.375, -70.125, -69.875, -69.625, -69.375, -69.125,
 -68.875, -68.625, -68.375, -68.125, -67.875, -67.625,
 -67.375, -67.125, -66.875, -66.625, -66.375, -66.125,
 -65.875, -65.625, -65.375, -65.125, -64.875, -64.625,
 -64.375, -64.125, -63.875, -63.625, -63.375, -63.125,
 -62.875, -62.625, -62.375, -62.125, -61.875, -61.625,
 -61.375, -61.125, -60.875, -60.625, -60.375, -60.125,
 -59.875, -59.625, -59.375, -59.125, -58.875, -58.625,

-58 375 -58 125 -57 875 -57 625 -57 375 -57 125

Out[9]: numpy.ma.core.MaskedArray

print (f.variables['sst'])

 f.variables['lat'][:]

type(f.variables['lat'][:])

1

1

1

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 5/19

In [10]:

You can look at the shape of each element. Remember 1 year has 365 days!

In [11]:

In [12]:

In [13]:

In [14]:

So what do we have? We have a lat/lon grid. Then each point has a sst. Then we have that repeated 365 times
for each day of the year.

Let's make our easy plot and then we will make the nice map.

In [15]:

What just happened? This did not make a map? It just took the sst array and plotted it. Each array point has a
latittude and longitude we could use to make a map. But we didn't do that. We just did a raw imshow which
shows the array. It is a nice start. Read the help and see if you can flip the array?

In [16]:

Out[11]: (365,)

Out[12]: (1440,)

Out[13]: (720,)

Out[14]: (365, 720, 1440)

Out[15]: <matplotlib.image.AxesImage at 0x7fda40784100>

lon=f.variables['lon'][:]
lat=f.variables['lat'][:]
sst=f.variables['sst'][:]
time=f.variables['time'][:]

np.shape(time)

np.shape(lon)

np.shape(lat)

np.shape(sst)

fig,ax=plt.subplots()
ax.imshow(sst[0])

?plt.imshow

1
2
3
4

1

1

1

1

1
2

1

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 6/19

In [18]:

imshow is nice as a quick way to show an array but it is not a map. The next way to make a better map is
pcolormesh. It uses the lat and long so it is better but still not a map.

In [19]:

Lets try to make that nicer

Let's go back and grab our last map and paste it in here. You should be able to make it work

Out[18]: <matplotlib.image.AxesImage at 0x7fd9d4f80d90>

<ipython-input-19-ebfd4181c561>:2: MatplotlibDeprecationWarning: shading='flat' wh
en X and Y have the same dimensions as C is deprecated since 3.3. Either specify
the corners of the quadrilaterals with X and Y, or pass shading='auto', 'nearest'
or 'gouraud', or set rcParams['pcolor.shading']. This will become an error two mi
nor releases later.
 ax.pcolormesh(lon,lat,sst[0])

Out[19]: <matplotlib.collections.QuadMesh at 0x7fd9eca2b820>

fig,ax=plt.subplots()
ax.imshow(sst[0],origin='lower')

fig,ax=plt.subplots()
ax.pcolormesh(lon,lat,sst[0])

1
2

1
2

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 7/19

In [41]:

Let's make it look better
I am going to make the land a slightly different color
Then we need to set the levels better. The reason is different days have different ranges.
We will use linspace to get levels and then pass the levels. You are setting the range. For contourf you
need to be over the min and max.

Out[41]: Text(0.5, 1.0, 'Temp\n(°C)')

fig,ax=plt.subplots()
fig.set_size_inches(7.5,5)

ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=-100))
ax.coastlines()
ax.add_feature(cartopy.feature.BORDERS)

data, lonW = add_cyclic_point(sst[0], coord=lon) # gets rid of white line and
air_contour=ax.contourf(lonW, lat, data,
 transform=ccrs.PlateCarree(),
 cmap='jet',levels=100)

cbar_ax = fig.add_axes([1.0, 0.3, .05, 0.4]) #x, y, xwidth, y height
fig.colorbar(air_contour, cax=cbar_ax)
cbar_ax.set_title('Temp\n(\N{DEGREE SIGN}C)')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 8/19

In [44]:

remember that we have 365 days of data.
So lets set a parameterto day number that we can change
If you know me you should know a for loop is coming and we are stepping our way there.
Now make a variable called "nday" and set it equal to the day you want to plot. For example January 31
will be 30 because python starts at 0.
Compare day 0 and day 180. Do the temperatures look different?

Out[44]: Text(0.5, 1.0, 'Temp\n(°C)')

fig,ax=plt.subplots()
fig.set_size_inches(7.5,5)

ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=-100))
ax.coastlines()
ax.add_feature(cartopy.feature.BORDERS,edgecolor='k')
ax.add_feature(cartopy.feature.LAND,facecolor='xkcd:off white')

data, lonW = add_cyclic_point(sst[0], coord=lon) # gets rid of white line and
levels=np.linspace(-2,34,37)
air_contour=ax.contourf(lonW, lat, data,
 transform=ccrs.PlateCarree(),
 cmap='jet',levels=levels)

cbar_ax = fig.add_axes([1.0, 0.3, .05, 0.4]) #x, y, xwidth, y height
fig.colorbar(air_contour, cax=cbar_ax)
cbar_ax.set_title('Temp\n(\N{DEGREE SIGN}C)')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 9/19

In [46]:

That is a good looking map!!!!

I am starting to see a path forward for how to make a movie of the temperatures over the year.

Python is not perfect for making movies.
We are going to make a modern flip book.
We will save an image for each frame and then we can use python or a web program to put them together.
It is like turning a burst on your phone into a movie.
We want to end with an animated GIF with python or a program. Things we will need to be able to do.

How do we do thi??

Loop over all the data.
Figure out the date for the data.
plot the data.
save the data in a unique file for each day
use python/website to put it all togehter.

So we need to learn each of these steps. I will start with figuring out the date for each slice.

Out[46]: Text(0.5, 1.0, 'Temp\n(°C)')

nday=180

fig,ax=plt.subplots()
fig.set_size_inches(7.5,5)

ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=-100))
ax.coastlines()
ax.add_feature(cartopy.feature.BORDERS,edgecolor='k')
ax.add_feature(cartopy.feature.LAND,facecolor='xkcd:off white')

data, lonW = add_cyclic_point(sst[nday], coord=lon) # gets rid of white line a
levels=np.linspace(-2,34,37)
air_contour=ax.contourf(lonW, lat, data,
 transform=ccrs.PlateCarree(),
 cmap='jet',levels=levels)

cbar_ax = fig.add_axes([1.0, 0.3, .05, 0.4]) #x, y, xwidth, y height
fig.colorbar(air_contour, cax=cbar_ax)
cbar_ax.set_title('Temp\n(\N{DEGREE SIGN}C)')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 10/19

Back to our crazy dates!

In [37]:

Still crazy! Time since 1800 in days! Let's deal with it like last time. Go cut and paste what we did.

Set your startdate
calculate your datedelta
Add them together to figure out your date
use ndays again
Change ndays and see if it

In [50]:

We need a for loop
I do not know the best way to for loop here.
I see three options
just give us a number to loop 20. e.g. 365. But would get an error on a leap year.
We could do an enumerate loop.
We could also just loop to length of a parameter.
I am going to do np.arange(len(time))
then print nday

<class 'netCDF4._netCDF4.Variable'>
float64 time(time)
 long_name: Time
 units: days since 1800-01-01 00:00:00
 delta_t: 0000-00-01 00:00:00
 avg_period: 0000-00-01 00:00:00
 axis: T
 actual_range: [79988. 80352.]
unlimited dimensions: time
current shape = (365,)
filling on, default _FillValue of 9.969209968386869e+36 used

The date is June 30, 2019

print (f.variables['time'])

nday=180
startdate=datetime.datetime(1800,1,1)
datedelta=datetime.timedelta(days=time[nday])
mapdate=startdate+datedelta
print ("The date is {:%B %d, %Y}".format(mapdate))

1

1
2
3
4
5

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 11/19

In [53]:

Now print each day in the foor loop. to save memory put the least amount of things needed in a for loop. You
can do this!

In [54]:

this might not make sense.

If we are going to make 365 plots one for each day. We need to save each to a file. So we need to create a file
name we can send to savfig.

We will want our files nicely oraganized.
We could use the dates to name the files. But we will lose their order. You could name the file yyyymmdd
and that should keep them in order. I haven't tried yet.
Instead I will do a number in the file name.
But we will want a three digit number in the name. This will keep them all in order.
it will look like sst_000.png, sst_001.png, sst_002.png, sst_364.png.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

The date on day 0 is January 01, 2019
The date on day 1 is January 02, 2019
The date on day 2 is January 03, 2019
The date on day 3 is January 04, 2019
The date on day 4 is January 05, 2019
The date on day 5 is January 06, 2019
The date on day 6 is January 07, 2019
The date on day 7 is January 08, 2019
The date on day 8 is January 09, 2019
The date on day 9 is January 10, 2019
The date on day 10 is January 11, 2019
The date on day 11 is January 12, 2019
The date on day 12 is January 13, 2019
The date on day 13 is January 14, 2019
The date on day 14 is January 15, 2019
The date on day 15 is January 16, 2019
The date on day 16 is January 17, 2019
The date on day 17 is January 18, 2019
The date on day 18 is January 19, 2019
The date on day 19 is January 20 2019

for nday in np.arange(len(time)):
 print(nday)

1
2

1

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 12/19

We can use format to pad the numbers. You remember this?
https://stackoverflow.com/questions/339007/nicest-way-to-pad-zeroes-to-string

In [56]:

But I will want to put the files into a subfolder. So if you make a folder named sst/ we could add the prefix to
the name. You need to make a folder on your computer. I am ging to repeat this. You named it sst/ but the
folder doesn't exist until you make it and then it will put the files into it.

In [57]:

Now we know how to

The date on day 0 is January 01, 2019 with filename sst_000.png
The date on day 1 is January 02, 2019 with filename sst_001.png
The date on day 2 is January 03, 2019 with filename sst_002.png
The date on day 3 is January 04, 2019 with filename sst_003.png
The date on day 4 is January 05, 2019 with filename sst_004.png
The date on day 5 is January 06, 2019 with filename sst_005.png
The date on day 6 is January 07, 2019 with filename sst_006.png
The date on day 7 is January 08, 2019 with filename sst_007.png
The date on day 8 is January 09, 2019 with filename sst_008.png
The date on day 9 is January 10, 2019 with filename sst_009.png
The date on day 10 is January 11, 2019 with filename sst_010.png
The date on day 11 is January 12, 2019 with filename sst_011.png
The date on day 12 is January 13, 2019 with filename sst_012.png
The date on day 13 is January 14, 2019 with filename sst_013.png
The date on day 14 is January 15, 2019 with filename sst_014.png
The date on day 15 is January 16, 2019 with filename sst_015.png
The date on day 16 is January 17, 2019 with filename sst_016.png
The date on day 17 is January 18, 2019 with filename sst_017.png
The date on day 18 is January 19, 2019 with filename sst_018.png
The date on day 19 is January 20 2019 with filename sst 019 png

The date on day 0 is January 01, 2019 with filename sst/sst_000.png
The date on day 1 is January 02, 2019 with filename sst/sst_001.png
The date on day 2 is January 03, 2019 with filename sst/sst_002.png
The date on day 3 is January 04, 2019 with filename sst/sst_003.png
The date on day 4 is January 05, 2019 with filename sst/sst_004.png
The date on day 5 is January 06, 2019 with filename sst/sst_005.png
The date on day 6 is January 07, 2019 with filename sst/sst_006.png
The date on day 7 is January 08, 2019 with filename sst/sst_007.png
The date on day 8 is January 09, 2019 with filename sst/sst_008.png
The date on day 9 is January 10, 2019 with filename sst/sst_009.png
The date on day 10 is January 11, 2019 with filename sst/sst_010.png
The date on day 11 is January 12, 2019 with filename sst/sst_011.png
The date on day 12 is January 13, 2019 with filename sst/sst_012.png
The date on day 13 is January 14, 2019 with filename sst/sst_013.png
The date on day 14 is January 15, 2019 with filename sst/sst_014.png
The date on day 15 is January 16, 2019 with filename sst/sst_015.png
The date on day 16 is January 17, 2019 with filename sst/sst_016.png
The date on day 17 is January 18, 2019 with filename sst/sst_017.png
The date on day 18 is January 19, 2019 with filename sst/sst_018.png
The date on day 19 is January 20 2019 with filename sst/sst 019 png

startdate=datetime.datetime(1800,1,1)
for nday in np.arange(len(time)):
 datedelta=datetime.timedelta(days=time[nday])
 mapdate=startdate+datedelta
 filename="sst_{:03d}.png".format(nday)
 print ("The date on day {} is {:%B %d, %Y} with filename {}".format(nday,ma

startdate=datetime.datetime(1800,1,1)
for nday in np.arange(len(time)):
 datedelta=datetime.timedelta(days=time[nday])
 mapdate=startdate+datedelta
 filename="sst/sst_{:03d}.png".format(nday)
 print ("The date on day {} is {:%B %d, %Y} with filename {}".format(nday,ma

1
2
3
4
5
6

1
2
3
4
5
6

https://stackoverflow.com/questions/339007/nicest-way-to-pad-zeroes-to-string

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 13/19

Make a title name with the date.
make a file name
loop over the array

But before you begin you need to think a little.

Each timestep we are going to make a figure, make a map, and save it.

But making a figure and map are "expensive" and eat up cpu. And you need to this 365 times. So when you
loop you want to set as many things before your loop as possible. Then you can use ax.cla() to clear the axes.
If you don't clear the axis you keep putting each day over the last day and you computer will grind to a halt. So
i would test things by running just a few days. You can do this by only calling the first so many parts of the
array. Plus you can use kernal->interrupt to stop a run.

Don't forget a title with your name and date. You need your name in the title.

TRICK: the first time using the for loop do not go over the np.arange(len(time)). just do np.arange(10). This way
if something goes wrong it just happens 10 times and not 365.

TRICK: you are making 365 files. make them small. use dpi=50. So you call to savefig will look like
fig.savefig(filename,dpi=50,bbox_inches='tight',facecolor='white') You need to add the facecolor='white' to
make the titles look good.

The websites for making a gif are full or viruses. I would use python.

I found this stackoverflow example.

https://stackoverflow.com/questions/41228209/making-gif-from-images-using-imageio-in-python
(https://stackoverflow.com/questions/41228209/making-gif-from-images-using-imageio-in-python)

Look at the answer and just update with your directories!

BUT THERE IS A BIG PROBLEM! If you look up os.listdir It says the order of files is arbitrary. On some
computers is works and on some it doesn't and it jumbles the order.

We have two solutions.

1. Kai came up with a great one about reading the files in (See below)
2. I tryed to understand what went wrong and it looks like we can sort our files. So I googled this "python

listdir in order". It then restated that listserv jumbles the order. But it says you can add the sorted function
to the for loop. See below!

PS. This is slow. My computer takes 30 minutes and makes a lot of noise!

PPS. You cannot open your movie in preview. Use a web browser.

https://stackoverflow.com/questions/41228209/making-gif-from-images-using-imageio-in-python
https://stackoverflow.com/questions/41228209/making-gif-from-images-using-imageio-in-python

4/8/24, 9:12 AM netcdf-v2-2020 - Jupyter Notebook

localhost:8888/notebooks/Documents/work-teaching/python/spring 24/BigDataPython/netcdf-v2-2020.ipynb# 14/19

In [69]:

Make the GIF. Choose a method.....

In [61]:

In [106]:

In []:

In [89]:

Brian's Map January 01, 2019
Brian's Map January 02, 2019

<ipython-input-69-1c80be8b3878>:16: MatplotlibDeprecationWarning: Adding an axes u
sing the same arguments as a previous axes currently reuses the earlier instance.
In a future version, a new instance will always be created and returned. Meanwhil
e, this warning can be suppressed, and the future behavior ensured, by passing a u
nique label to each axes instance.
 ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=-100))

Brian's Map January 03, 2019
Brian's Map January 04, 2019
Brian's Map January 05, 2019
Brian's Map January 06, 2019
Brian's Map January 07, 2019
Brian's Map January 08, 2019
Brian's Map January 09, 2019
Brian's Map January 10, 2019
Brian's Map January 11, 2019
Brian's Map January 12, 2019

Collecting imageio-ffmpeg
 Downloading imageio_ffmpeg-0.4.5-py3-none-macosx_10_9_intel.macosx_10_9_x86_64.m
acosx_10_10_intel.macosx_10_10_x86_64.whl (22.5 MB)
 |████████████████████████████████| 22.5 MB 18.0 MB/s eta 0:00:01 |█████▌
| 3.9 MB 6.5 MB/s eta 0:00:03 |████████████████▎ | 11.4 MB 6.5 M
B/s eta 0:00:02 |█████████████████████▎ | 15.0 MB 6.5 MB/s eta 0:00:0
2 |██████████████████████████████▏ | 21.2 MB 18.0 MB/s eta 0:00:01
Installing collected packages: imageio-ffmpeg
Successfully installed imageio-ffmpeg-0.4.5

import imageio
import os

option 1.

images = []
for i in range(0,365):
 filename='sst/sst_{:03d}.png'.format(i)
 images.append(imageio.imread(filename))
#imageio.mimwrite('sst/omg_movie2.gif', images)
#
imageio.mimsave('sst/omg_movie2.gif', images)
#imageio.mimsave('sst/omg_movie2.mp4', images)

option 2
png_dir = 'sst/'
images = []
for file_name in sorted(os.listdir(png_dir)):
 if file_name.endswith('.png'):
 file_path = os.path.join(png_dir, file_name)
 images.append(imageio.imread(file_path))

imageio.mimsave('sst/omg_movie2.gif', images)

!pip install imageio-ffmpeg

1

1
2

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9

1

