
2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 1/29

Pandas
Today we are going to really start using pandas. Lets review the libraries or packages and what they have done so

far.

1. We always start byt typing %matploltlib inline. This is a built in magic command that enables us to plot the data

right into our ipython notebook https://ipython.org/ipython-doc/3/interactive/magics.html

2. we import matplotlib.pyplot as plt. This turns on all the graphing capabilities and then uses the shorthand plt.

for when we call functions from matplotlib. This used to be called pylab but was updated to pyplot. Then we say

fig,ax=plt.subplots() and all the plot functions go into fig and ax

3. we import numpy as np. This turns on math functions and we use the shorthand np.

4. from scipy we import stats. scipy gives us a lot of analysis functions and we use linear regression from stats.

5. Now we are also going to use pandas. Pandas is database management. It lets us take complicated datasets

and anlyze them. You can think of it like a supercharged excel where you combine the organization of excel with

the power of a programming language. It can do amazing things and I am still learning every day. So lets get

started!

6. What is pandas? http://pandas.pydata.org/index.html and here is the documentation

http://pandas.pydata.org/pandas-docs/stable/

7. import pandas as pd!!!!!!

8. On a final note you can see I made a numbered list in markdown. To do that you type a number a period and

then two spaces.

9. Also in terms of line numnbers. I turn my line numbers on so it is easier to debug. Do this under view

Importing files

We are going to start by finding our csv file and reading it in

I only want to list the csv files so I can see what I can read in. so I will do ls *.csv the star is a wildcard that means

everything and then .csv is only ones that end in .csv. Today we are going to look at data from well water chemistry

in Bangladesh. Specifically arsenic concentrations and if people drink the water. We will also look at the rest of the

chemistry. We are looking at well water arsenic because drinking water with arsenic has negative long term health

impacts. The US standard for arsenic is 10 ppb or 10 ug/L. The bangladesh standard is 50 ppb. Lets see what we

can learn! We are going to try and learn about how many people drink water with 10 or 50 ppb arsenic. (to show the

star I had to type *)

The data is on the edblogs siteh ttps://edblogs.columbia.edu/eescx3050-001-2015-3/category/classes/class-10-

start-pandas/ or on the github site https://github.com/bmaillou/BigDataPython/blob/master/well_data.csv.

'/Users/bmaillou/Documents/work-teaching/python/fall21/BigDataPython'

Brian.csv gdp2 - Copy.csv
CoreEM09GC01-extra-line.csv gdp2.csv
CoreEM09GC01.csv gdp2015.csv
GDP-Lifespan - Copy.csv gdp_and_lifespan.csv
GDP-Lifespan.csv gdp_only.csv
GDP_Lifespan_all_data.csv gdp_only_download.csv
Libby_Thesis_Data.csv mystery.csv

In [2]: %matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

In [4]: pwd

Out[4]:

In [5]: ls *.csv

https://ipython.org/ipython-doc/3/interactive/magics.html
http://pandas.pydata.org/index.html
http://pandas.pydata.org/pandas-docs/stable/
https://github.com/bmaillou/BigDataPython/blob/master/well_data.csv

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 2/29

Well-As.csv twoD1.csv
central_park.csv weekly_mlo.csv
fldav_ljo.csv well_data.csv
fldav_ljo_Yasna.csv well_sites.csv
gdp.csv

now we read in a well_data.csv. But I want to use pandas and not numpy.

But we are going to read in some data and try to analyze it. open the well_data.csv. It is for wells from Bangladesh.

every well has an id#, a latitude and longitude, Depth, if people drink it and then some concentration data. lets use

readcsv to get read in. In Pandas you are trying to get your data into a dataframe which is like an excel sheet. It will

have column titles and an index for rows. It is all about the dataframes. When using pandas people name things 'df' a

lot. That is shorthand for dataframe. I am not a good namer.

I am going to just name it df today.

The data is now magically in the computers memory even if we can't see it we can access it!

This is important. Your output may not look like my output. It changes
between computers depending on default settings when you installed.
Don't worry. If you see data of descriptions you are fine.

just typing well_data will give us some descriptions of what we got! It used the first row for column names!

Well_ID Lat Lon Depth Drink Si P S Ca Fe ... N

0 2 23.74 90.31 45 Y NaN NaN NaN NaN NaN ... Na

1 14 23.62 90.60 60 Y NaN NaN NaN NaN NaN ... Na

2 23 23.94 91.46 60 Y NaN NaN NaN NaN NaN ... Na

3 83 23.80 91.33 50 Y 48084.33842 0.936358 2085.570979 54666.48199 1.260031 ... 76.20744

4 84 23.98 90.81 150 Y NaN NaN NaN NaN NaN ... Na

...

754 12516 24.71 90.41 160 Y 32379.64000 0.197380 3669.430000 39790.24000 0.341200 ... 26.29928

755 12654 24.36 91.27 60 Y 25561.12000 0.090570 13771.370000 57630.63000 1.498350 ... 19.72336

756 72641 24.38 90.90 45 N 31319.48000 1.162550 38.300000 60905.16000 22.417560 ... 14.11491

757 76175 23.90 90.65 60 N 30605.53000 1.556120 4168.520000 66756.16000 12.793100 ... 33.18036

758 141499 23.60 91.34 50 N NaN NaN NaN NaN NaN ... Na

759 rows × 21 columns

Since we didn't set an index it just numbers each row and calls that the index. But that doesn't help us. I think we

could set the well_id to the index. When you look at your data above. see how the numbers on the left have no title

but are a little offset. That is the index. But what is an index. I am not sure. It is sort of like a master column that

helps us organize the data. It will make more sense when we get to timeseries analysis. That is where pandas shines

even more. But lets set and index and use well_id as that is the most important factor.

In [3]: df=pd.read_csv('well_data.csv')

In [4]: df

Out[4]:

In []:

In [5]: df=df.set_index('Well_ID')

In [6]: df

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 3/29

Lat Lon Depth Drink Si P S Ca Fe Ba

Well_ID

2 23.74 90.31 45 Y NaN NaN NaN NaN NaN NaN

14 23.62 90.60 60 Y NaN NaN NaN NaN NaN NaN

23 23.94 91.46 60 Y NaN NaN NaN NaN NaN NaN

83 23.80 91.33 50 Y 48084.33842 0.936358 2085.570979 54666.48199 1.260031 96.159587 76.20

84 23.98 90.81 150 Y NaN NaN NaN NaN NaN NaN

...

12516 24.71 90.41 160 Y 32379.64000 0.197380 3669.430000 39790.24000 0.341200 77.770000 26.29

12654 24.36 91.27 60 Y 25561.12000 0.090570 13771.370000 57630.63000 1.498350 73.230000 19.72

72641 24.38 90.90 45 N 31319.48000 1.162550 38.300000 60905.16000 22.417560 176.020000 14.11

76175 23.90 90.65 60 N 30605.53000 1.556120 4168.520000 66756.16000 12.793100 178.870000 33.18

141499 23.60 91.34 50 N NaN NaN NaN NaN NaN NaN

759 rows × 20 columns

we can undue the index

Well_ID Lat Lon Depth Drink Si P S Ca Fe ... N

0 2 23.74 90.31 45 Y NaN NaN NaN NaN NaN ... Na

1 14 23.62 90.60 60 Y NaN NaN NaN NaN NaN ... Na

2 23 23.94 91.46 60 Y NaN NaN NaN NaN NaN ... Na

3 83 23.80 91.33 50 Y 48084.33842 0.936358 2085.570979 54666.48199 1.260031 ... 76.20744

4 84 23.98 90.81 150 Y NaN NaN NaN NaN NaN ... Na

...

754 12516 24.71 90.41 160 Y 32379.64000 0.197380 3669.430000 39790.24000 0.341200 ... 26.29928

755 12654 24.36 91.27 60 Y 25561.12000 0.090570 13771.370000 57630.63000 1.498350 ... 19.72336

756 72641 24.38 90.90 45 N 31319.48000 1.162550 38.300000 60905.16000 22.417560 ... 14.11491

757 76175 23.90 90.65 60 N 30605.53000 1.556120 4168.520000 66756.16000 12.793100 ... 33.18036

758 141499 23.60 91.34 50 N NaN NaN NaN NaN NaN ... Na

759 rows × 21 columns

Or we could just read in the data with the index set.

If you don't know the column name you can use the column number!

The first great trick of pandas!

The describe function. It gives you amazing summary statistics lickety-split!

Out[6]:

In []:

In [7]: df=df.reset_index()

In [8]: df #since we have an index it prints the index name on its own row.

Out[8]:

In [9]: df=pd.read_csv('well_data.csv',index_col='Well_ID')

In [10]: df=pd.read_csv('well_data.csv',index_col=0)

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 4/29

Lat Lon Depth Si P S Ca Fe

count 759.000000 759.000000 759.000000 407.000000 407.000000 407.000000 407.000000 407.000000 4

mean 23.789249 90.641199 65.554677 40101.151444 0.809323 3407.292389 41129.291921 5.556200

std 0.578493 0.578800 42.186161 10117.680290 0.902860 5364.247733 20161.130827 5.153779

min 22.780000 89.610000 0.000000 12605.576700 0.008210 -41.390000 3577.160000 -0.003680

25% 23.285000 90.155000 45.000000 33200.310900 0.151957 149.635000 26996.273955 1.706806

50% 23.790000 90.650000 50.000000 40021.490000 0.507850 1220.877945 40166.830000 3.931310

75% 24.300000 91.130000 70.000000 45369.825000 1.189271 4341.695000 52976.458285 8.531585 1

max 24.770000 91.650000 523.000000 70304.057950 5.477616 45035.460000 116040.620000 30.192230 29

A hint of what is to come! But we just got all of our summary statistics.

<AxesSubplot:>

That boxplot was hard to see. What if we just look at As and Fe?

<AxesSubplot:>

this plotting is a little diffrent then how we have been plotting. Pandas has some built in plotting so you can make

some really nice and quick plots. But these plots are a little harder to customize. So we will be doing both types of

plotting depending on the goal. The goal could be a quick view versus a profesional looking plot.

We can also just get a list of our columns.

In [11]: df.describe()

Out[11]:

In [12]: df.boxplot()

Out[12]:

In [13]: fig,ax=plt.subplots()
df.boxplot(column=['As','Fe'],ax=ax)

Out[13]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 5/29

Index(['Lat', 'Lon', 'Depth', 'Drink', 'Si', 'P', 'S', 'Ca', 'Fe', 'Ba', 'Na',
 'Mg', 'K', 'Mn', 'As', 'Sr', 'F', 'Cl', 'SO4', 'Br'],
 dtype='object')

Why did the columns not have parantheses? I am learning this. But each dataframe has attributes and methods.

Methods uses paranthesis. Think of it as having to do something. An attribute just tells you about the dataframe and

doesn't need parantheses. Methods can take extra arguments.

Remember NaN is not a number. We are going to use this to our advantage!

shape still gives us the shape. We can call it two different ways

(759, 20)

(759, 20)

Stop and think for a second. What does this shape mean?

It means we are starting to analyze a lot of data. It is a dataset with 759 rows or wells and 20 columns or different

parameters. This will already get hard to deal with in excel!

We have to slow down and learn some Pandas basics. this is a critical
section. Take your time
Now how do we get at our data. How do we slice it. There are many ways. lets go through them all.

.ix

.loc

.iloc

[]

We are going to do a lot of practice and then I tried to make a cheat sheet/table. Take lots of notes.

[] works like normal except you can only use integers on rows and names on columns. you can't use integers on both

rows and columns.

I am putting .head() on the print statements to save paper. You don't need them. It just shows the first 5 rows

Lat Lon Depth Drink Si P S Ca Fe Ba N

Well_ID

2 23.74 90.31 45 Y NaN NaN NaN NaN NaN NaN Na

14 23.62 90.60 60 Y NaN NaN NaN NaN NaN NaN Na

23 23.94 91.46 60 Y NaN NaN NaN NaN NaN NaN Na

83 23.80 91.33 50 Y 48084.33842 0.936358 2085.570979 54666.48199 1.260031 96.159587 76.20744

84 23.98 90.81 150 Y NaN NaN NaN NaN NaN NaN Na

In [14]: df.columns

Out[14]:

In [15]: df.shape

Out[15]:

In [16]: np.shape(df)

Out[16]:

In [17]: df[:].head() #I am including head to shorten my printouts

Out[17]:

In [18]: print(df['As'].head())

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 6/29

Well_ID
2 NaN
14 NaN
23 NaN
83 78.97747
84 NaN
Name: As, dtype: float64

Well_ID
2 NaN
14 NaN
23 NaN
83 78.97747
84 NaN
Name: As, dtype: float64

Well_ID
330 10.233204
333 NaN
342 NaN
356 NaN
374 18.365596
389 59.285003
397 115.834040
398 NaN
402 17.755544
403 81.859568
410 NaN
414 NaN
415 87.102492
417 NaN
418 386.827954
420 79.798479
421 142.409968
434 NaN
475 270.785974
478 56.883257
Name: As, dtype: float64

Well_ID
330 10.233204
342 NaN
374 18.365596
397 115.834040
402 17.755544
410 NaN
415 87.102492
418 386.827954
421 142.409968
475 270.785974
Name: As, dtype: float64

But you can pass a list to the columns you want! SEE the double brackets??? It is a list in the brackets!

As Depth

Well_ID

330 10.233204 45

342 NaN 30

374 18.365596 45

397 115.834040 45

402 17.755544 30

In [19]: print (df[:]['As'].head()) #This is the same as the one above showing the rows

In [21]: print (df[30:50]['As']) #This prints rows 30-50.

#Don't get confused as well_ID is our index and the name of the row

In [22]: print (df[30:50:2]['As']) #we skipped by twos!

In [23]: df[30:50:2][['As','Depth']]

Out[23]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 7/29

As Depth

Well_ID

410 NaN 60

415 87.102492 60

418 386.827954 65

421 142.409968 150

475 270.785974 55

And the order doesn't matter. So somehow it is smart about rows and columns

As Depth

Well_ID

330 10.233204 45

342 NaN 30

374 18.365596 45

397 115.834040 45

402 17.755544 30

410 NaN 60

415 87.102492 60

418 386.827954 65

421 142.409968 150

475 270.785974 55

Depth As

Well_ID

330 45 10.233204

342 30 NaN

374 45 18.365596

397 45 115.834040

402 30 17.755544

410 60 NaN

415 60 87.102492

418 65 386.827954

421 150 142.409968

475 55 270.785974

What I am teaching you is easy and hard at the same time. Take your time. It is a lot. I am showing you how to get at

data. I just showed you brackets and now I am going to show you .loc. Also remember I just add .head to shorten the

printouts. you can remove it.

.loc only uses names of the index and the columns.

In [25]: df[['As','Depth']][30:50:2]

Out[25]:

In [26]: df[['Depth','As']][30:50:2]

Out[26]:

In [156…

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 8/29

THIS IS DIFFERENT. It is saying if my index matches this name then print it. This is a little confusing our the wells

have numbers for names

Sometimes I put print sometimes not. It doesn't always matter and sometimes one looks nicer than the other.

Lat Lon Depth Drink Si P S Ca Fe Ba N

Well_ID

2 23.74 90.31 45 Y NaN NaN NaN NaN NaN NaN Na

14 23.62 90.60 60 Y NaN NaN NaN NaN NaN NaN Na

23 23.94 91.46 60 Y NaN NaN NaN NaN NaN NaN Na

83 23.80 91.33 50 Y 48084.33842 0.936358 2085.570979 54666.48199 1.260031 96.159587 76.20744

84 23.98 90.81 150 Y NaN NaN NaN NaN NaN NaN Na

Lat Lon Depth Drink Si P S Ca Fe Ba

Well_ID

101 24.40 90.26 60 Y 34311.71514 0.117534 2618.717799 42646.99574 1.843156 58.666191 28.28

107 24.02 89.67 45 N NaN NaN NaN NaN NaN NaN

110 23.39 91.35 45 Y 47417.95635 1.095644 113.180915 46848.09017 11.740445 131.582974 23.585

112 24.61 91.18 60 Y 37289.99489 2.448648 13.335397 65129.07627 8.923465 134.435231 15.87

116 22.96 89.77 60 Y NaN NaN NaN NaN NaN NaN

130 22.94 89.97 60 N 44023.88418 1.172086 1023.167741 80183.25742 6.349396 159.171636 32.82

153 24.17 90.81 45 Y 40523.43773 0.091676 2848.048146 40703.88184 1.869486 69.657716 29.68

156 22.84 91.56 60 N 48375.82211 0.979053 1420.255478 52694.25919 13.020352 129.253387 23.804

Lat 24.4
Lon 90.26
Depth 60
Drink Y
Si 34311.7
P 0.117534
S 2618.72
Ca 42647
Fe 1.84316
Ba 58.6662
Na 28.281
Mg 22.5784
K NaN
Mn 1.19269
As 28.0709
Sr 123.043
F 0.1994
Cl 38.1123
SO4 7.518
Br 0.0552
Name: 101, dtype: object

But we can use column names

In [28]: df.loc[:].head() #gives us all rows with all indexes

Out[28]:

In [29]: df.loc[101:156]
#gives us all rows with all indexes but the numbers have to match an index. The numbers had to ma

Out[29]:

In [30]: df.loc[101] # just call one index. This is well 101

Out[30]:

In [32]: df.loc[102] # if the index doesn't exist you get an error

In []:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 9/29

Well_ID
2 NaN
14 NaN
23 NaN
83 78.97747
84 NaN
Name: As, dtype: float64

Plus it can seperata with commas as well as multiple brackets

Well_ID
2 NaN
14 NaN
23 NaN
83 78.97747
84 NaN
Name: As, dtype: float64

You can look at the type. It shows if you just get one column then it turns from a dataframe to a series

<class 'pandas.core.series.Series'>
<class 'pandas.core.series.Series'>

This suble difference can sometimes be important. A series is more like a set of values.

Well_ID
330 10.233204
342 NaN
374 18.365596
397 115.834040
402 17.755544
410 NaN
415 87.102492
418 386.827954
421 142.409968
475 270.785974
481 NaN
488 NaN
500 NaN
Name: As, dtype: float64

We can also add a list of names

As Depth

Well_ID

330 10.233204 45

342 NaN 30

374 18.365596 45

397 115.834040 45

402 17.755544 30

410 NaN 60

415 87.102492 60

418 386.827954 65

421 142.409968 150

475 270.785974 55

In [33]: df.loc[:]['As'].head()

Out[33]:

In [34]: df.loc[:,'As'].head()

Out[34]:

In [35]: print (type(df.loc[:]['As']))
print (type(df.loc[:,'As']))

In [36]: print (df.loc[330:500:2]['As'])

In [37]: df.loc[330:500:2][['As','Depth']]

Out[37]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 10/29

As Depth

Well_ID

481 NaN 60

488 NaN 45

500 NaN 60

iloc

iloc only uses integers. So now this is row numbers. NOT the index. look the Well_ID compared to the iloc numberss

Lat Lon Depth Drink Si P S Ca Fe Ba N

Well_ID

2 23.74 90.31 45 Y NaN NaN NaN NaN NaN NaN Na

14 23.62 90.60 60 Y NaN NaN NaN NaN NaN NaN Na

23 23.94 91.46 60 Y NaN NaN NaN NaN NaN NaN Na

83 23.80 91.33 50 Y 48084.33842 0.936358 2085.570979 54666.48199 1.260031 96.159587 76.20744

84 23.98 90.81 150 Y NaN NaN NaN NaN NaN NaN Na

Lat Lon Depth Drink Si P S Ca Fe Ba Na

Well_ID

3058 23.92 90.47 60 Y NaN NaN NaN NaN NaN NaN NaN

3060 23.62 91.56 60 Y 37199.96208 0.949837 13.694978 51862.73844 10.061950 119.569875 11.641918

3103 23.33 90.12 130 Y NaN NaN NaN NaN NaN NaN NaN

3112 24.43 91.05 45 Y 41513.82677 1.697027 14.933618 47308.53575 14.961449 133.853170 22.606914

3179 23.18 90.78 50 Y NaN NaN NaN NaN NaN NaN NaN

and column number. But we use a column seperator.......

Well_ID
3058 NaN
3060 0.949837
3103 NaN
3112 1.697027
3179 NaN
Name: P, dtype: float64

In [38]: df.iloc[:].head()

Out[38]:

In [39]: df.iloc[101:110:2] #this is row numbers now. so the index is not matching.

Out[39]:

In [40]: df.iloc[101:110:2,5]

Out[40]:

In [41]: df.iloc[101:110:2,2:5]

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 11/29

Depth Drink Si

Well_ID

3058 60 Y NaN

3060 60 Y 37199.96208

3103 130 Y NaN

3112 45 Y 41513.82677

3179 50 Y NaN

Just to boggles your bind a little.....

Depth P Fe

Well_ID

3058 60 NaN NaN

3060 60 0.949837 10.061950

3103 130 NaN NaN

3112 45 1.697027 14.961449

3179 50 NaN NaN

ix was phased out.

AttributeError Traceback (most recent call last)
<ipython-input-43-6c367ed50da5> in <module>
----> 1 print (df.ix[101:110:2,[2,5,8]])

~/anaconda3/lib/python3.8/site-packages/pandas/core/generic.py in __getattr__(self, name)
 5137 if self._info_axis._can_hold_identifiers_and_holds_name(name):
 5138 return self[name]
-> 5139 return object.__getattribute__(self, name)
 5140
 5141 def __setattr__(self, name: str, value) -> None:

AttributeError: 'DataFrame' object has no attribute 'ix'

Dot notation

I am not sure if that is the official name but here is how it works

What I didn't show you is a dot notation.

Well_ID
2 NaN
14 NaN
23 NaN
83 78.97747
84 NaN
Name: As, dtype: float64

Dot notation only works if you name your columns well. No minus signs or spaces.

Out[41]:

In [42]: df.iloc[101:110:2,[2,5,8]] #I just had it show columns 2,5,8

Out[42]:

In [43]: print (df.ix[101:110:2,[2,5,8]])

In []:

In [44]: df.As.head()

Out[44]:

In [45]: df.As[20:30]

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 12/29

Well_ID
233 NaN
237 NaN
275 NaN
279 NaN
280 5.364619
283 NaN
287 NaN
290 NaN
292 53.097829
295 NaN
Name: As, dtype: float64

All examples in one place so maybe we can make sense of them?

Name Description

[]

well_data[:] all data

well_data[:]['As'] all arsenic data

well_data.loc[:,'As'] basically the same as above

well_data['As'] all arsenic data.

well_data[1:10]['As'] arsenic data from rows 1-10 excluding 10

well_data[1:10:2]['As'] same but skipping by two

well_data[1:10:2][['As','Depth']] for As and depth. note the double brackets.

well_data[['As','Depth']][1:10:2] order doesn't matter

well_data[['Depth','As']][1:10:2] order doesn't matter.

you can't use column numbers...................................

loc Description

well_data.loc[:] gives us all rows with all columns

well_data.loc[101:156] needs to be an index Gives us by index number not row number.

well_data.loc[101:156:2] and we can skip

well_data.loc[101:156:2]['As'] and we can do column names

well_data.loc[:]['As']

well_data.loc[:,'As'] is the same as above. I have bugs where one works but other doesn't

well_data.loc[101:156:2][['As','Depth']] we can do multiple columns

.. .

iloc

well_data.iloc[:] gives it all.

well_data.iloc[101:110:2] does row numbers.

well_data.iloc[101:110:2,5] row number by column number

well_data.iloc[101:110:2,2:5] mulitple row multiple number

well_data.iloc[101:110:2,[2,5,8]] select columns

... .

Out[45]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 13/29

ix phased out

Dot notation. This can be very nice.

well_data.As gives all arsenic data

well_data.As[1:5] gives rows 1-5

...

You can use boolean choices to get the data you want. For example I gave the
description if people drink or don't drink from their well. Lets count that.

value_counts is a great first function. It just counts for you. Simple but very helpful.

I am going to do the same thing many different ways! value_counts is a function that counts each

Y 614
N 144
Name: Drink, dtype: int64

is the same as

Y 614
N 144
Name: Drink, dtype: int64

Is the same as (I am trying to teach you pandas)

Y 614
N 144
Name: Drink, dtype: int64

Is the same as (I am trying to teach you pandas)

Y 614
N 144
Name: Drink, dtype: int64

Now you should be able to access your data. I always forget the semantics. Look online or back at your cheat

sheets. That is why I made the cheat sheet above.

Now we can sub-select data very easily.

We can return a boolean based on results.

Well_ID
2 True
14 True
23 True
83 True
84 True
 ...

In [46]: df['Drink'].value_counts()

Out[46]:

In [48]: df.Drink.value_counts()

Out[48]:

In [49]: df.iloc[:,3].value_counts()

Out[49]:

In [50]: df.loc[:,'Drink'].value_counts()

Out[50]:

In [51]: df['Drink']=='Y'

Out[51]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 14/29

12516 True
12654 True
72641 False
76175 False
141499 False
Name: Drink, Length: 759, dtype: bool

Also do it with the dot notation

Well_ID
2 True
14 True
23 True
83 True
84 True
 ...
12516 True
12654 True
72641 False
76175 False
141499 False
Name: Drink, Length: 759, dtype: bool

What if we only want data from wells people drink from? we can ask for that. Remember I just added the .head() to

save paper

Lat Lon Depth Drink Si P S Ca Fe Ba N

Well_ID

2 23.74 90.31 45 Y NaN NaN NaN NaN NaN NaN Na

14 23.62 90.60 60 Y NaN NaN NaN NaN NaN NaN Na

23 23.94 91.46 60 Y NaN NaN NaN NaN NaN NaN Na

83 23.80 91.33 50 Y 48084.33842 0.936358 2085.570979 54666.48199 1.260031 96.159587 76.20744

84 23.98 90.81 150 Y NaN NaN NaN NaN NaN NaN Na

What if we only wanted arsenic concentrations where people drink the water?

This is weird again.

You are saying only give me As.

Well_ID
2 NaN
14 NaN
23 NaN
83 78.97747
84 NaN
Name: As, dtype: float64

In the crazy world of pandas where you put the Arsenic doesn't matter.

Well_ID
2 NaN
14 NaN
23 NaN
83 78.97747
84 NaN
Name: As, dtype: float64

Say you wanted to do an intervention. You would want to go to the houses with the highest arsenic first. So we could

ask what are the well id's for people who drink water and their arsenic is greater than 250 ppb. This would be poeple

In [53]: df.Drink=='Y'

Out[53]:

In [59]: df[df.Drink=='Y'].head()

Out[59]:

In [60]: df[df.Drink=='Y']['As'].head()

Out[60]:

In [62]: df['As'][df.Drink=='Y'].head()

Out[62]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 15/29

with high exposure! We would need to use an and statement.

In pandas you do this two ways.

np.logical_and().

Else you can use the & but YOU NEED PARANTHESE. REMEMBER THIS!!!!! It will come back and help you.

We would try to convince these households to switch. The drinking water standard is 10 ppb. This is really crazy

high exposure.

Well_ID
475 270.785974
2821 285.971884
2841 506.750799
2977 282.519542
4545 439.690000
4689 267.553524
4793 271.752307
4987 255.620635
5060 368.900000
5557 351.206317
5717 700.890000
5788 422.070000
6137 309.920000
6583 339.300000
7007 304.690000
8051 308.880000
8522 256.610000
9362 299.530000
Name: As, dtype: float64

A second way to do boolean and in pandas. Remember. When you split a line at a comma in a fucntion you don't

need to use the . I do this to make the packets print better. You don't need to do it. But also line breaks can just

make things cleaner and easier to see

Well_ID
475 270.785974
2821 285.971884
2841 506.750799
2977 282.519542
4545 439.690000
4689 267.553524
4793 271.752307
4987 255.620635
5060 368.900000
5557 351.206317
5717 700.890000
5788 422.070000
6137 309.920000
6583 339.300000
7007 304.690000
8051 308.880000
8522 256.610000
9362 299.530000
Name: As, dtype: float64

Can we look at who drinks from their wells and if they don't drink is it beacuse it has more arsenic?

Another way to word this.

What is the average arsenic in wells people drink from?

What is the averarge arsenic in wells people don't drink from.

Use decribe....

In [64]: df['As'][(df.Drink=='Y') & (df.As>250)]

Out[64]:

In [67]: df['As'][np.logical_and(df.Drink=='Y'
 ,df.As>250)]

Out[67]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 16/29

Arsenic of wells where people drink
count 336.000000
mean 72.484421
std 91.571489
min 0.000000
25% 9.962403
50% 39.975000
75% 99.294435
max 700.890000
Name: As, dtype: float64

Arsenic of wells where people don't drink
count 71.000000
mean 171.105792
std 107.308224
min 1.368709
25% 81.614239
50% 150.250000
75% 250.245000
max 473.340000
Name: As, dtype: float64

What do the results above show?

I am going to come back to groupby here and there and we will do a whole packet on it. But when your brain can

think through groupby it makes things simpler. So here we are going to groupby drink and then describe As. It

should do what we just did in one line and make a nicer output.

count mean std min 25% 50% 75% max

Drink

N 71.0 171.105792 107.308224 1.368709 81.614239 150.250 250.245000 473.34

Y 336.0 72.484421 91.571489 0.000000 9.962403 39.975 99.294435 700.89

Could we disply this data?

<AxesSubplot:>

In [68]: #wells people drink from
print('Arsenic of wells where people drink')
print (df['As'][df.Drink=='Y'].describe())

wells people don't drinkfrom
print ('\nArsenic of wells where people don\'t drink') #to put the ' in the line I added a \ befo
print (df['As'][df.Drink=='N'].describe())

In [71]: df.groupby('Drink')['As'].describe()

Out[71]:

In []:

In [72]: df.boxplot(column='As')

Out[72]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 17/29

Do you remember what a boxplot shows? I found this next picture on stackoverflow. No need to import. Just for your

reference.

http://stackoverflow.com/questions/17725927/boxplots-in-matplotlib-markers-and-outliers

cool boxplots

But we really want two boxplots. One for people who drink and one for people who don't drink. I wasn't sure how to

do it? So I googled pandas boxplot. Here are two of the links I got. See if you can figure it out! If you scroll down on

the first link you should find the answer.... You will want your boxplots grouped. (only spend 2 minutes on this and I

will come help you. Don't go down a rabbit hole on this. Answer at the ened)

click on the first link

scroll down to where it says boxplots.

Now scroll a little further to where you see the boxplots that say "grouped by x"

look in the code.

see if you can find a keyword argument in the parantheses that could hep you and figure out what column to

pass

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.boxplot.html

http://stackoverflow.com/questions/23232989/boxplot-stratified-by-column-in-python-pandas

In [67]: from IPython.display import Image
Image(filename='boxplot_structure.png',width=600)

Out[67]:

http://stackoverflow.com/questions/17725927/boxplots-in-matplotlib-markers-and-outliers
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.boxplot.html
http://stackoverflow.com/questions/23232989/boxplot-stratified-by-column-in-python-pandas

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 18/29

<matplotlib.axes._subplots.AxesSubplot at 0xc0542e8>

What difference do you notice about the arsenic concentrations of peeople drinking from their wells?

Whenever you are comparing two populations a t-test should pop into
your head!

t-test or student t-test
A t-test tells you if there is a significant difference between two means. Actually it tells you the probability that they

are the same. Back to our friend the p-value! The first website seems to have a good explanation.

Whenever you are comparing two means you run a t-test.

I am going to repeat this. If you ever compare two populations with a mean you need to run a t-test to see if the

differences are statistically signifcant.

You then need to choose if it is

1. Paired scipy.stats.ttest_rel

2. not paired scipy.stats.ttest_ind

By paired we mean you repeated the measure on the same thing. Can you track the same thing across two samples.

For example The exam score of the same person before and after an intervention

By not paired we mean two different populations. Imagine we fed 100 people carrots and 100 people steak and we

weighed them and wanted to know if their exam scores was differnt. That is not paired and also the worst

experiment ever!

In terms of our arsenic example if we measured the same wells twice it would be paired. if we measured different

sets of wells it is unpaired.

Finally, if you are doing unpaired you need to decide if the groups have the same or unequal variance. It is statiscally

safer to choose unequal variance. But you can always look at your variance and decide.

Your results are a t statistic and a p-value. We want our p-value less than 0.05 or 0.01 again!

Back to our wells. We will run an unparied t-test with unequal variance.

so lets pass our arrays from aboce with Arsenic for Drink=Y and Drink=N

In [65]:

Out[65]:

https://www.investopedia.com/terms/t/t-test.asp
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.ttest_rel.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.ttest_ind.html

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 19/29

We are asking if the difference we see with our eyes in the boxplot is statistically significant for arsenic. You need

the stats to verify!

THIS WILL FAIL!

Ttest_indResult(statistic=nan, pvalue=nan)

It failed b/c we have NaN's in our data (Not a Number). NaN's are nice as they keep track where we don't have data.

But scipy does not handle NaN's well.

So we need to get rid of them then do the math.

In pandas terms we need to drop the NaN's using the function dropna

Well_ID
83 78.977470
101 28.070949
110 96.885674
112 80.627214
153 39.249817
 ...
12363 26.980000
12440 21.740000
12461 117.820000
12516 0.130000
12654 17.390000
Name: As, Length: 336, dtype: float64

So try again!

Ttest_indResult(statistic=-7.209206229150192, pvalue=1.4829579464861492e-10)

That is a small p-value!!!!!

So a signficant difference!

You could say the mean arsenic concentration is lower in well where people drink then where they don't drink

(p<0.01)

What wells do people drink from?

For our final exercise. Lets put it together and get data and then see if we can plot it. I want to know the number of

people who are drinking from there wells based on the arsenic concentrations. Can we do the reverse. if the arsenic

is <10,10-50, and >50 what is the value counts of drinking and not drinking. I chose these numbers because 10 ppb

is the EPA and WHO drinking water limit. 50 ppb is the Bangladesh drinking water limit. We see negative health

effects at 10ppb. Drinking water with 10 ppb arsenic is bad for you! It increases your risk of cardiovascular disease,

cancers, and death!

I would first just try and break the data into 3 groups and print out the results. So use your way of selecting data and

select data based on the levels of arsenic. To do between 10 and 50 you will need to use an and statement and how

to do those is different. you need to use a boolean function to choose two data sets! works by taking two arguments

and then returning what happens the same way as if you did an and. but it works better. Remember we did this

above.

In [74]: stats.ttest_ind(df['As'][df.Drink=='Y']\
 ,df['As'][df.Drink=='N'])

Out[74]:

In [75]: df['As'][df.Drink=='Y'].dropna()

Out[75]:

In [76]: stats.ttest_ind(df['As'][df.Drink=='Y'].dropna()
 ,df['As'][df.Drink=='N'].dropna()
 ,equal_var=False)

Out[76]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 20/29

Three Groups

1. <10 ppb arsenic

2. 10-50 ppb arsenic

3. >50 ppb arsenic

4. Print out the number of people drinking from wells with arsenic less than 10. you can use value_counts() and

your selection method.

This is the graph we want to make

<matplotlib.text.Text at 0x11506128>

First start by counting who drinks less than 10.

people drinking with arsenic <10
Y 84
N 1
Name: Drink, dtype: int64

1. Next use determine the people drinking from wells with arsenic more than 50.

people drinking with >50
Y 147
N 66
dtype: int64

1. Now use your logical_and() or & and parantheses to determine between 10 and 50.

people drinking with 10-50
Y 105
N 4
dtype: int64

Looking at the data one by one is painful. Lets work on getting to our bar chart. This is a bad way of looking at the

data. I would like to make bar plot. Here is my goal. Can we get there? Follow the next steps after the plot and see

how it goes!

python does not make bar plots easy. But let's make one anyway

In [145…

Out[145…

In [77]: print ('people drinking with arsenic <10')

df['Drink'][df.As<=10].value_counts()

Out[77]:

In [113…

In [115…

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 21/29

First lets look up bar plot. http://matplotlib.org/examples/api/barchart_demo.html This is the example on all the web

pages. We can make sense of it. Lets do one step at a time. What plt.bar wants is (x,y,width). lets do it for As<10

first. Here is our data again. The x location and width become arbitrary to make it look pretty.

Y 84
N 1
Name: Drink, dtype: int64

So we want to plot 84 Drink, 1 Doesn't drink. I will do it longhand first time.

remember it is ax.bar(x,y,width)

x=where to plot it and is a bit of a dumy variable y=the height of the bar width=how wide you want the bars

<BarContainer object of 1 artists>

The default width is 0.8 starting from 0. Now we need to add the doesn't drink.

<BarContainer object of 1 artists>

Now we need to add colors and labels for a legend.

In [85]: df['Drink'][df.As<=10].value_counts()

Out[85]:

In [86]: # bar for people who drink
fig,ax=plt.subplots()
ax.bar(0,84,1)

Out[86]:

In [88]: # bar for people who drink and don't drink
fig,ax=plt.subplots()
ax.bar(0,84,.8)
ax.bar(0.8,1,.8)

Out[88]:

In [87]: fig,ax=plt.subplots()
ax.bar(0,84,0.8,color='g',label='Drink')
ax.bar(0.8,1,0.8,color='r',label="Doesn't Drink")
#I did double quotes so I could print the single quote
ax.legend(loc='best')

http://matplotlib.org/examples/api/barchart_demo.html

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 22/29

<matplotlib.legend.Legend at 0x7f8862c5afd0>

this is a disaster. We can't hard wire it all. We need to be better in our programming and be what people call

pythonic. now instead of setting the x-axis to zero lets use np.arange. Then also lets set the width. We will also make

the second bar start at one width

<matplotlib.legend.Legend at 0x7f7fdf6d2880>

Now we are starting to make progress. But we need the other two sets of bars. We will need a set of yes and no

values. so we need yes[0],yes[1],yes[2] representing our values. I would make a nump array of zeros and then fill it

in. So to make a numpy array of zeros. then fill in the array. we know the length has to be three.

[0. 0. 0.]

Now do the same for no. then set each one equal to the correct result that you have above where you printed out the

results. don't print the results like you did above. set them to yes,no given the correct array spot. At the end you

should now have yes and no set for the three levels.

[0. 0. 0.]

Now I will show you how to add the first yes and no

Out[87]:

In [79]: fig,ax=plt.subplots()
width=0.35
xvalues=np.arange(1)
ax.bar(xvalues,84,width,color='g',label='Drink')
ax.bar(xvalues+width,1,width,color='r',label="Doesn't Drink")
#I did double quotes so I could print the single quote
ax.legend(loc='best')

Out[79]:

In [90]: yes=np.zeros(3)
print (yes)

In [85]:

In [91]: yes=np.zeros(3)
no=np.zeros(3)

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 23/29

yes [84. 0. 0.]
no [1. 0. 0.]

Now can you do the other two?

[84. 105. 147.] [1. 4. 66.]

Now we can do a bar plot of yes and no. Go copy and past your barplot code from above. but now make the x-axis

have an np.arange of 3 b/c we want 3 locations. And don't use the hardwired number put in your new yes and no

arrays you just made.

<matplotlib.legend.Legend at 0x106ed908>

Now you are looking great with a wonderful graph. lets label everything. We just need an x-axis labeled correctly.

Also, I would put all the code in one cell so it always works smoothly. If we go back to our webpage with the example

we can use ax.set_xticks(xvalues+width/2) to get us the xticks we want. then we can add

ax.set_xticklabels(('names','names','names')). We can also use ax.set_xlabel() and ax.set_ylabel()

<matplotlib.text.Text at 0x10f052e8>

Now that is a great looking graph. You just need to add a figure caption. I would write something like

Number of wells categorized by if the respondents drink or don't drink from the well and stratified by arsenic

concentration.

yes[0],no[0]=df['Drink'][df.As<=10].value_counts()
print ('yes',yes)
print ('no',no)

In [140…

In [141…

Out[141…

In [144…

Out[144…

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 24/29

As a total bonus and if you have time you could change it from the number of wells to the proportion of wells in each

category.

<matplotlib.text.Text at 0x19af3cc0>

I thought it might be nice to stack the bars since they add up to 100..... See

http://matplotlib.org/examples/pylab_examples/bar_stacked.html It is "easy" I used the bottom keyword. Then I

removed the width offset and tweaked a few other things

<matplotlib.text.Text at 0x1a6b4c18>

Some homework hints.

for the homework you will need to make scatter plots. They are easy to make in pandas. Here is one of Arsenic

versus Iron. You can label your axes and change the color of your symbols.

Text(0, 0.5, 'Iron mg/L')

In [100…

Out[100…

In [106…

Out[106…

In [92]: fig,ax=plt.subplots()
ax.scatter(df['As'],df['Fe'],c='xkcd:vomit')
ax.set_xlabel('Arsenic ug/L')
ax.set_ylabel('Iron mg/L')

Out[92]:

http://matplotlib.org/examples/pylab_examples/bar_stacked.html

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 25/29

Below is a simpler method

We will learn more about this but I did advanced Python.

1. I defined bins

2. I used groubpy to group the data by if people drink

3. I added a cut value to also group by the bins I cut and set by.

4. I then filled the group by the counts.

5. I then unstack and transpose and flip the matrix.

6. Then I can plot that new data.

7. The fun part is I can change the bins and it automtacillay updates!

Text(0, 0.5, 'Percent of wells used')

In []:

In []:

In [109… bins=[0,10,50,1000]
df_No_Yes=df.groupby(['Drink',pd.cut(df['As'],bins)])\
 .As.count().unstack().transpose()

fig,ax=plt.subplots(1,1)
width=0.35
xvalues=np.arange(df_No_Yes.shape[0])
ax.bar(xvalues,df_No_Yes.Y,width,color='g',label='Drink')
ax.bar(xvalues+width,df_No_Yes.N,width,color='r',label="Doesn't Drink")
#I did double quotes so I could print the single quote

ax.legend(loc='best')
#You can try numbers 1-8 for location. see http://matplotlib.org/1.3.1/users/legend_guide.html

ax.set_xticks(xvalues+width/2)
ax.set_xticklabels(df_No_Yes.index.values)#('<10','10-50','>50'))
ax.set_xlabel('Arsenic Concentration ppb')
ax.set_ylabel('Percent of wells used')

Out[109…

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 26/29

Answers

<AxesSubplot:title={'center':'As'}, xlabel='Drink'>

people drinking with <10
Y 84
N 1
Name: Drink, dtype: int64

people drinking with >50
Y 147
N 66
Name: Drink, dtype: int64

people drinking with 10-50
Y 105
N 4

In [73]: df.boxplot(column='As',by='Drink')

Out[73]:

In [79]: print ('people drinking with <10')

df['Drink'][df.As<=10].value_counts()

Out[79]:

In [80]: print ('\npeople drinking with >50 ')

df['Drink'][df.As>=50].value_counts()

Out[80]:

In [84]: print ('people drinking with 10-50')

df['Drink'][(df.As<=50)&(df.As>=10)].value_counts()

using np.logical_and
#df['Drink'][np.logical_and(df.As<=50,df.As>=10)].value_counts()

Out[84]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 27/29

Name: Drink, dtype: int64

[84. 105. 147.] [1. 4. 66.]

<matplotlib.legend.Legend at 0x7f8862f94070>

Text(0, 0.5, 'Number of wells')

In [94]: yes=np.zeros(3)
no=np.zeros(3)
yes[0],no[0]=df['Drink'][df.As<=10].value_counts()
yes[1],no[1]=df['Drink'][(df.As<=50)&(df.As>=10)].value_counts()
yes[2],no[2]=df['Drink'][df.As>=50].value_counts()
print (yes,no)

In [95]: fig,ax=plt.subplots(1,1)
width=0.35
xvalues=np.arange(3)
ax.bar(xvalues,yes,width,color='g',label='Drink')
ax.bar(xvalues+width,no,width,color='r',label="Doesn't Drink") #I did double quotes so I could pr
ax.legend(loc='best')

Out[95]:

In [96]: yes=np.zeros(3)
no=np.zeros(3)
yes[0],no[0]=df['Drink'][df.As<=10].value_counts()
yes[1],no[1]=df['Drink'][(df.As<=50)&(df.As>=10)].value_counts()
yes[2],no[2]=df['Drink'][df.As>=50].value_counts()

fig,ax=plt.subplots()
width=0.35
xvalues=np.arange(3)
ax.bar(xvalues,yes,width,color='g',label='Drink')
ax.bar(xvalues+width,no,width,color='r',label="Doesn't Drink")
#I did double quotes so I could print the single quote
ax.legend(loc='best')
ax.set_xticks(xvalues+width/2)
ax.set_xticklabels(('<10','10-50','>50'))
ax.set_xlabel('Arsenic Concentration ppb')
ax.set_ylabel('Number of wells')

Out[96]:

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 28/29

Text(0, 0.5, 'Percent of wells used')

In [105… yes=np.zeros(3)
no=np.zeros(3)
yes[0],no[0]=df['Drink'][df.As<=10].value_counts()\
 /df['Drink'][df.As<=10].count()*100

yes[1],no[1]=df['Drink'][(df.As<=50)&(df.As>=10)].value_counts()\
 /df['Drink'][(df.As<=50)&(df.As>=10)].count()*100

yes[2],no[2]=df['Drink'][df.As>=50].value_counts()\
 /df['Drink'][df.As>=50].count()*100

fig,ax=plt.subplots(1,1)
width=0.35
xvalues=np.arange(3)
ax.bar(xvalues,yes,width,color='g',label='Drink')
ax.bar(xvalues+width,no,width,color='r',label="Doesn't Drink") #I did double quotes so I could pr
ax.legend(loc='best')
ax.set_xticks(xvalues+width/2)
ax.set_xticklabels(('<10','10-50','>50'))
ax.set_xlabel('Arsenic Concentration ppb')
ax.set_ylabel('Percent of wells used')

Out[105…

In [107… yes=np.zeros(3)
no=np.zeros(3)
yes[0],no[0]=df['Drink'][df.As<=10].value_counts()\
 /df['Drink'][df.As<=10].count()*100

yes[1],no[1]=df['Drink'][(df.As<=50)&(df.As>=10)].value_counts()\
 /df['Drink'][(df.As<=50)&(df.As>=10)].count()*100

yes[2],no[2]=df['Drink'][df.As>=50].value_counts()\
 /df['Drink'][df.As>=50].count()*100

2/18/24, 4:40 PM Pandas_Well_Data

localhost:8888/nbconvert/html/Documents/work-teaching/python/spring 24/BigDataPython/Pandas_Well_Data.ipynb?download=false 29/29

Text(0, 0.5, 'Percent of wells used')

fig,ax=plt.subplots(1,1)
width=0.35
xvalues=np.arange(3)
ax.bar(xvalues,yes,width,color='g',label='Drink')
ax.bar(xvalues,no,width,color='r',bottom=yes,label="Doesn't Drink")
#I did double quotes so I could print the single quote
ax.legend(loc=3) #You can try numbers 1-8 for location. see http://matplotlib.org/1.3.1/users/le
ax.set_xticks(xvalues+width/2)
ax.set_xticklabels(('<10','10-50','>50'))
ax.set_xlabel('Arsenic Concentration ppb')
ax.set_ylabel('Percent of wells used')

Out[107…

In []:

In []:

