
9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 1/11

Welcome to Big Data!!!

Today we are going to analyze Rainfall data from central Park to
get you started

We are going to do this all in a Jupyter notebook which was formerly called
iPython. This will take some getting used to. You actually do your
programming in a window in a web browser or in a program. But you are not
online. You are running off of your own computer. But we will teach you all
you need to do. Make sure to type everything you see correctly. All syntax
matters including capital letters and punctuation.
Ok, Lets get you started. But make sure you read the syllabus and get a binder to keep the handouts. You

need to do the code.org also!

We are going to use Anaconda python. We have used Enthought Canopy but anaconda seems to work

better.

Look on the course site for directions to open Anaconda and then you can move around directories.

Remember nothing gets saved on the school computers. so whatever you save each day you need to

email to yourself or save some home

Open Jupyter notebook like in the video

Now we are in iPython!!!!

You see that I am using Markdown to add these notes. You make markdown by choosing Markdown above

you can change from code to Markdown. Notes are essential to understanding everything. Please make a

new cell and add some notes! We will do more of this later. If you download the notebook from

Courseworks under syllabus you can double click on the notes and see how I added links! I will show you

how to add equations and images later!

But we wanted to analyze precipitation data from Central Park. What questions could we ask and answer?

I have downloaded the data from 1876 onward! I want to know the precipiation in the month I was born? I

want to know the annual average precipiation in Central Park and I also want to know what monthly

Precipitation looks like. Lets see if we can figure that out today. We are going to dive in really deep the

first class and show you the power of programming. Then over the course of the semester I will teach you

how to do this on your own. So enjoy the first analysis, see what we can do and then work on learning it

yourself during the semester.

The first thing we will do is import the python libraries that we will use. When programming you don't use

the whole Python programming language. You have a basic part of Python that is always turned-on but

also you import or turn on the parts of the language that you will use for your analysis. You will learn about

different libraries as the semester progresses.

Type in what you see below. Then to execute the code hit shift-enter. The little circle will fill in on the top

right as the computer computes code. It needs to be exact, uppercase, lowercase etc. TYPE EXACTLY!

In [1]: %matplotlib inline
import pandas as pd
import numpy as np
import matplotlib # for plot data
import matplotlib.pylab as plt

http://continuum.io/
https://www.enthought.com/products/canopy/

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 2/11

Now we need to get our data. I will use github a lot this semester. It is a website that allows you to update

and share code and to keep track of it. It is like Dropbox on steroids. I got the data from NOAA

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00094728/detail.

The information for this class is at this website https://github.com/bmaillou/BigDataPython

This is the cool part. We don't need to get it. We can just link it below. But you can look at the data and

download if you want. follow the link to central park csv file. Then click on it and look at the raw data. csv

files are a great way of getting data. csv means commas seperated variables. It is just a text file with data

seperated by commas. now copy the link so we can add it below. The link goes to the url. Then we are

using the pandas reader to get the data. We are then indexing by Date to organize. In pandas data is

usually called "df" for dataframes. It is almost like a monster excel sheet.

Now the data is in the computer as df. You could just type df to see it. I typed df.head() to see the first 5

rows. Type df.tail() to see the last 5.

STATION NAME DASF MDSF PRCP SNOW SNWD

DATE

2022-08-24 USW00094728 NY CITY CENTRAL PARK, NY US NaN NaN 0.00 0.0 0.0

2022-08-25 USW00094728 NY CITY CENTRAL PARK, NY US NaN NaN 0.00 0.0 0.0

2022-08-26 USW00094728 NY CITY CENTRAL PARK, NY US NaN NaN 0.24 0.0 0.0

2022-08-27 USW00094728 NY CITY CENTRAL PARK, NY US NaN NaN 0.00 0.0 0.0

2022-08-28 USW00094728 NY CITY CENTRAL PARK, NY US NaN NaN 0.00 0.0 0.0

You can do a lot with the data. For some quick ideas type df. with the period and hit tab. The list of

functions comes up.

But lets make a quick and dirty plot. To plot all the data you type df.plot() and then to show the plot you

type plt.show()

In [63]: url='https://raw.githubusercontent.com/bmaillou/BigDataPython/master/CentralPark2022.csv
df = pd.read_csv(url,index_col='DATE',parse_dates=['DATE']) #This is central park data

In [64]: df.tail()

Out[64]:

In []:

In [34]: df.plot()
plt.show()

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00094728/detail
https://github.com/bmaillou/BigDataPython

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 3/11

I want to know what type of data I have. So i need to check the data type, show how to type data1. Hit tab

and then see what we can do.

STATION object
NAME object
DASF float64
MDSF float64
PRCP float64
SNOW float64
SNWD float64
dtype: object

But pandas has better built in functions. try df.info() to learn more about your data

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 56064 entries, 1869-02-28 to 2022-08-28
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 STATION 56064 non-null object
 1 NAME 56064 non-null object
 2 DASF 56 non-null float64
 3 MDSF 56 non-null float64
 4 PRCP 56064 non-null float64
 5 SNOW 55901 non-null float64
 6 SNWD 39565 non-null float64
dtypes: float64(5), object(2)
memory usage: 3.4+ MB

We are only interested in precipitation today. So lets just plot it. We can subchoose just that column.

<AxesSubplot:xlabel='DATE'>

In [28]: df.dtypes

Out[28]:

In [29]: df.info()

In [30]: df['PRCP'].plot()

Out[30]:

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 4/11

We can use describe to look at the description of the data.

DASF MDSF PRCP SNOW SNWD

count 56.0 56.000000 56064.000000 55901.000000 39565.000000

mean 2.0 5.172679 0.124627 0.074042 0.279201

std 0.0 5.786808 0.352954 0.625393 1.451665

min 2.0 0.310000 0.000000 0.000000 0.000000

25% 2.0 2.010000 0.000000 0.000000 0.000000

50% 2.0 4.020000 0.000000 0.000000 0.000000

75% 2.0 6.627500 0.050000 0.000000 0.000000

max 2.0 40.000000 8.280000 27.300000 26.000000

Stop and think for a second. What do the results mean above? They say we have over 50,000

precipitation values! We know something about them and we have done this really quickly!

Can you just show the describe for Precitation? Use what you learned above

count 56064.000000
mean 0.124627
std 0.352954
min 0.000000
25% 0.000000
50% 0.000000
75% 0.050000
max 8.280000
Name: PRCP, dtype: float64

We are lucky this year. The data is now in inches! They used to give you the data in 10's of mm. That is

cm's but I am npt sure why they called it that. So lets convert to cm as practice.

1 in = 2.54 cm.

<AxesSubplot:xlabel='DATE'>

In [31]: df.describe()

Out[31]:

In [35]:

Out[35]:

In [36]: (df.PRCP*2.54/1).plot() #we are doing the math and plotting at the same time!

Out[36]:

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 5/11

Again, stop and think about the data? What are the biggest rainstorms we have gotten? How does this

compare to some hurricanes you hear about on the news?? or some other big storm near you? What

about Ida?

lets convert to cm so we can save it forever!

Check and make sure it worked using describe. Does the data make sense?

Make sure not to convert twice above. Everytime you convert is saves it. Your numbers will keep getting

smaller and smaller.....

If you convert more than once you have to go up and re-read in the data

count 56064.000000
mean 0.316553
std 0.896502
min 0.000000
25% 0.000000
50% 0.000000
75% 0.127000
max 21.031200
Name: PRCP, dtype: float64

I like inches! So lets convert back and then describe again.

count 56064.000000
mean 0.124627
std 0.352954
min 0.000000
25% 0.000000
50% 0.000000
75% 0.050000
max 8.280000
Name: PRCP, dtype: float64

can we just get yearly rainfall? We can resample the data and sum all the rainfall for each year! Plus look

and I am adding a comment to the code below!

DATE

In [37]: df.PRCP=df.PRCP*2.54/1

In [38]:

Out[38]:

In [39]: df.PRCP=df.PRCP/2.54
df.PRCP.describe()

Out[39]:

In [40]: df['PRCP'].resample('A').sum() #This just gave us yearly rainfall!

Out[40]:

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 6/11

1869-12-31 35.85
1870-12-31 39.25
1871-12-31 51.38
1872-12-31 43.99
1873-12-31 47.99
 ...
2018-12-31 65.55
2019-12-31 53.03
2020-12-31 45.35
2021-12-31 59.73
2022-12-31 28.02
Freq: A-DEC, Name: PRCP, Length: 154, dtype: float64

Now we could plot the yearly data!

<AxesSubplot:xlabel='DATE'>

We could also make it a scatter plot with points and no line. This is the power of plotting with matplotlib.

You can change anything!

go to http://matplotlib.org/1.3.1/examples/pylab_examples/filledmarker_demo.html and choose your own

color and style. if you want to turn the line off do linestyle='none'

<AxesSubplot:xlabel='DATE'>

Can you use describe to give statistics on the annual data? How much rain fell on the wettest year?

In [41]: df['PRCP'].resample('A').sum().plot()

Out[41]:

In [42]: df['PRCP'].resample('A').sum().plot(marker='8',color='g',fillstyle='top',linestyle='none

Out[42]:

In [44]:

http://matplotlib.org/1.3.1/examples/pylab_examples/filledmarker_demo.html

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 7/11

count 154.000000
mean 45.370714
std 8.485716
min 26.090000
25% 39.335000
50% 44.415000
75% 49.307500
max 80.560000
Name: PRCP, dtype: float64

What if we only want to plot some of the data? Lets plot from 1900 to 1920...

<AxesSubplot:xlabel='DATE'>

or for just one year

<AxesSubplot:xlabel='DATE'>

or one month!

<AxesSubplot:xlabel='DATE'>

Out[44]:

In [45]: df.PRCP['1900':'1920'].plot()

Out[45]:

In [46]: df.PRCP['1972'].plot()

Out[46]:

In [47]: df.PRCP['02/01/1972':'03/01/1972'].plot()

Out[47]:

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 8/11

Can you plot for the month and or year you were born?

Now we are going to do some big changes. (I am also showing you here that you can do bullets in the

Markdown)

My end point is to look at the monthly data in boxplots.

But to get there we need to resample to monthly.

Then we need to make a new column that lists the months.

Then we can make a boxplot!

So lets start by making a new dataframe which is the data resampled by summing the monthly data.

Now we can describe the data

DASF MDSF PRCP SNOW SNWD

count 1843.000000 1843.000000 1843.000000 1843.000000 1843.000000

mean 0.060770 0.157173 3.791150 2.245795 5.993814

std 0.437887 1.508668 2.128407 4.847776 24.271023

min 0.000000 0.000000 0.000000 0.000000 0.000000

25% 0.000000 0.000000 2.310000 0.000000 0.000000

50% 0.000000 0.000000 3.430000 0.000000 0.000000

75% 0.000000 0.000000 4.810000 2.000000 0.000000

max 6.000000 40.000000 18.950000 36.900000 346.000000

So things appear to be working. What does our data look like?

 DASF MDSF PRCP SNOW SNWD
DATE

In []:

In [55]: df_month=df.resample('M').sum()

In [56]: df_month.describe()

Out[56]:

In [57]: print (df_month) # a big difference between python 2 and 3 is you need parentheses on the

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 9/11

1869-02-28 0.0 0.0 0.00 0.0 0.0
1869-03-31 0.0 0.0 4.61 0.8 0.0
1869-04-30 0.0 0.0 1.39 0.0 0.0
1869-05-31 0.0 0.0 4.15 0.0 0.0
1869-06-30 0.0 0.0 4.40 0.0 0.0
...
2022-04-30 0.0 0.0 4.53 0.0 0.0
2022-05-31 0.0 0.0 4.52 0.0 0.0
2022-06-30 0.0 0.0 2.92 0.0 0.0
2022-07-31 0.0 0.0 4.55 0.0 0.0
2022-08-31 0.0 0.0 1.59 0.0 0.0

[1843 rows x 5 columns]

To make our plotting work we will need a new column that tells us just the month. So we are going to look

at the index date and pull out the month and put it into a new column.

lets just look at 5 rows and see if it worked.

DASF MDSF PRCP SNOW SNWD month

DATE

1869-02-28 0.0 0.0 0.00 0.0 0.0 2

1869-03-31 0.0 0.0 4.61 0.8 0.0 3

1869-04-30 0.0 0.0 1.39 0.0 0.0 4

1869-05-31 0.0 0.0 4.15 0.0 0.0 5

1869-06-30 0.0 0.0 4.40 0.0 0.0 6

Now lets make our boxplot! you can google pandas boxplot to see how. http://pandas.pydata.org/pandas-

docs/stable/visualization.html

Foreshadowing. I am going to ask you to use this by notation in a future
class!

this is a big hint. remember column and by. I AM GOING TO ASK THIS AGAIN!

Also, to make it look fancy I am showing the mean values and making it have a notch. You can make both

options False or just delete them. They are extra arguments in the function.

<AxesSubplot:title={'center':'PRCP'}, xlabel='month'>

In [58]: df_month['month']=df_month.index.month

In [59]: df_month.head() #head just gives you the first 5

Out[59]:

In [60]: df_month.boxplot(column=['PRCP'],by='month',showmeans=True,notch=True)

Out[60]:

http://pandas.pydata.org/pandas-docs/stable/visualization.html

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 10/11

the great thing about python is you can make a professional looking graph and save it and have it ready to

use. So lets do it.

First we turn on fancy graphs. We do fig,ax=plt.subplots() this lets us control all parts of the graph in

terms of the axes and the overall figure.

First we remove the title and suptitle by making them nothing. ax.set_title('') fig.suptitle('') You could

add titles if you wanted.

We label our y-axis. Always label axes. ax.set_ylabel('Precipitation (inches)')

We make the x-axis nicer.

We make the label fonts bigger

We save the file. I added some keywords to make the file nice. the dpi is dots per inch so it has better

resolution and the bbox makes sure nothing is cut off.

You can decide if you want to turn off gridlines. add grid=False

for a hard one we could add month of year instead of 1-12. I used

ax.set_xticklabels(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])

I think that is a sharp graph! You should be able to find it on your computer and mail it to yourself.

In [61]: fig,ax=plt.subplots()
df_month.boxplot(column=['PRCP'],by='month',showmeans=True,notch=True,ax=ax,grid=False)
ax.set_title('')
fig.suptitle('')
ax.set_ylabel('Precipitation (inches)',fontsize=14)
ax.set_xlabel('Month of Year',fontsize=14)
ax.set_xticklabels(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','De
fig.savefig('Central-Park-Monthly-Precip.jpg',dpi=600,bbox_inches='tight')

9/5/22, 3:17 PM time-series-first-analysis_v2

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall22/BigDataPython/time-series-first-analysis_v2.ipynb?download=false 11/11

I talk about making figure captions in the homework. So lets make one here. Here is the definition of a

boxplot

Figure 1. Boxplot of monthly precipitation Central Park, New York City from 1876 to 2015. The indent is the

median, the triangle is the mean, the box goes from Q1 to Q3 with the whiskers showing the range of the

data and circles are outliers larger than 1.5 times the interquartile range.

We will also need to learn about how to talk about results. We can see from the figure that precipitation

does not systematically vary by month in Central Park and that the mean monthly precipitation is fairly

uniform.

to get the monthly data we can groupby month and the describe the data. or just look at the mean. We will

also only look at prcp. As you can see rain is pretty uniform by month in NYC!

month
1 3.490065
2 3.300649
3 3.971688
4 3.720325
5 3.741818
6 3.659286
7 4.388442
8 4.418961
9 3.871765
10 3.731830
11 3.541765
12 3.652876
Name: PRCP, dtype: float64

I hope you got some of these to work and are excited about what we can do. You just analyzed 50,000

precipitation data points on your first day! We are ready to begin learning data analysis and Python! But

for next class we have to go back to the basics!

In [62]: df_month.groupby('month').PRCP.mean()

Out[62]:

In []:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html#:~:text=A%20box%20plot%20is%20a,the%20range%20of%20the%20data

