
10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 1/14

Best Fit Line
today we are going to write our own code for fitting a line and then compare it to differnt

functions in python. We are going to take our math form Daniel C. Harris, Quantitative Chemical

Analysis pages 66 and 67. Python can fit a line for you. But it is good to do a few of these

functions by hand to see how they work.

To begin we are going to cheat and make our lives easier and use the numpy package. This

package lets us do some array operations really easily and we won't have to do for loops. I was

thinking of being mean and using all for loops. But lets take advantage of python. First lets

import numpy and see what we can do.

[1. 3. 4. 6.]

numpy.ndarray

So we could enter a list but instead of calling it a list we call it a numpy array. This is like a

supercharged list.

Now we can make the y

Now this is where numpy gets really cool. you can multiply and add your lists. This is different

than array math if you have taken linear algebra. But we will be able to do that also.

[2. 9. 16. 30.]

do you see what it just did? It multiplied elementwise!

[3. 6. 8. 11.]

[-1. 0. 0. 1.]

[0.5 1. 1. 1.2]

[1. 0. 0. 1.]

If you are doing linear algebra there are methods to do true matrix multiplication. For example

In [1]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

In [33]: x=np.array([1.,3,4,6])

print (x)

type(x)

Out[33]:

In [34]: y=np.array([2,3,4,5])

In [6]: print (x*y)

In [7]: print (x+y)

In [8]: print (x-y)

In [9]: print (x/y)

In [10]: print (x%y)

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 2/14

the dot product.

57.0

14.0

4

remember that tab is your friend. if you type np. and hit tab you will see a ton of functions we

can call

What does our data look like?

Text(0, 0.5, 'y')

It is not a perfect line. So we need to fit a best fit line!

Now we can fit a line!!!!
I have now given you all the tools you need to figure out the best fit equation of a line.

Remember the best fit equation of the line is y=mx+b where m is the slope and b is the

intercept. We fit 2 points last time which define a line. When you have many points you have to

find the best fit. We can do that! To do the fit when you have multiple points you get the

equations

In [11]: print (np.dot(x,y))

In [12]: print (np.sum(x))

In [13]: print (len(x))

In []: np.

In [5]: fig,ax=plt.subplots()

ax.scatter(x,y)

ax.set_xlabel('x')

ax.set_ylabel('y')

Out[5]:

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 3/14

remember means for each element in the list of x.

so in our case

if we sum up all of one list that is

n is the length of our list

So lets plot our x and y data, look at it and then fit it.

So go ahead and figure out your m and b and then plot the line on the graph.

<matplotlib.text.Text at 0x10bff9290>

Now lets use Python to fit the line.

Two functions

1. linregress

2. Polyfit (not critical for now)

Linregress (short for linear regression)

m =
(nΣxiyi−ΣxiΣyi)

(nΣ(x2
i)−(Σxi)2)

b =
Σ(x2

i)Σyi−(Σxiyi)Σxi)

nΣ(x2
i)−(Σxi)2

xi

x0 = 1, x1 = 3, x2 = 4, x3 = 6

Σxi = 1 + 3 + 4 + 6 = 14

In [33]:

Out[33]:

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 4/14

I like linregress from scipy for my basic line fitting. the strength it has over polyfit is that it

returns a p-value and an r which you can convert into r along with the slope and intercept. Lets

learn about it!

The key is we give it an x and y and then it returns:

slope : float
slope of the regression line

intercept : float
intercept of the regression line

r-value : float
correlation coefficient

p-value : float
two-sided p-value for a hypothesis test whose null hypothesis is
that the slope is

zero.

stderr : float
Standard error of the estimate

We have talked about this some. But I want to say more explicitly here. In python when you call a

function it can return many things. It doesn't have to return one number. It can return an array or

multiple values. For linregress it returns 5 values. We can names these or put them in an array (I

use array and list semi-interchangeably, I apologize and I will try to fix this). HOW PYTHON CAN

RETURN MANY THINGS ON THE LEFT SIDE OF AN EQUAL SIGN IS WEIRD. Get used to it!

LinregressResult(slope=0.6153846153846154, intercept=1.3461538461538458, rvalue=
0.9922778767136677, pvalue=0.007722123286332257, stderr=0.05439282932204183)

Why do I like stats.linregress? Becuase it gives us the r-value (square it and you have the r-

squared) and the p-value. How do these results compare against yours that you calculated?

But if you want to use your stats results set it equal to something, it will make a list and then you

can access it. Or you can set each item. so the two ways are.

First way. Set results equal to a list

0.6153846153846154

LinregressResult(slope=0.6153846153846154, intercept=1.3461538461538458, rvalue=
0.9922778767136677, pvalue=0.007722123286332257, stderr=0.05439282932204183)

We can give the output meaningful names!

2

In [12]: ?stats.linregress

In [7]: stats.linregress(x,y)

Out[7]:

In [8]: stats_out=stats.linregress(x,y)

In [9]: stats_out[0]

Out[9]:

In [10]: stats_out

Out[10]:

In [38]: slope, intercept, r_value,p_value,stderr= stats.linregress(x,y)

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 5/14

0.6153846153846154

1.3461538461538458

We can give the output nonsensical names. Remember we control the computer and we are

naming them!

1.3461538461538458

so it is up to you on how you want to get to the data from a function like stats.linregress()

I just learned a cool trick that I like. You can also use dot notation with your linregress output!

This is nice!

LinregressResult(slope=0.6153846153846154, intercept=1.3461538461538458, rvalue=
0.9922778767136677, pvalue=0.007722123286332257, stderr=0.05439282932204183)

But now you can use the names to get the results.

0.6153846153846154

1.3461538461538458

I think this might be easier than using the array number or the names!

One thing I have problems with is long lines I want on multiple lines. For example sometimes I

like to define a long string and then use that string as a title. To have it go over multiple lines you

can use brackets. here is an example of a long string I made for a title. You can see me

accessing the results both ways. Plus I added a \n to break lines and python let me break up the

code on multiple lines since I was in a parantheses. Sometimes you can also add a \ to break the

lines to get a line continuation. see https://stackoverflow.com/questions/4172448/is-it-possible-

to-break-a-long-line-to-multiple-lines-in-python

The best fit line as a slope m=0.615 and intercept b=1.346

best fit line linregress slope m=0.615 and intercept b=1.346

Now lets fix up our graph!

In [39]: slope

Out[39]:

In [40]: intercept

Out[40]:

In [41]: phineas, ferb, perry,candace,isabelle= stats.linregress(x,y)

In [42]: print (ferb)

In [43]: stats_out=stats.linregress(x,y)

print (stats_out)

In [44]: print (stats_out.slope)

In [45]: print (stats_out.intercept)

In [46]: title=('The best fit line as a slope m={:.3f} and intercept b={:.3f}'\

 .format(stats_out[0],stats_out[1])+

 '\nbest fit line linregress slope m={:.3f} and intercept b={:.3f} '\

 .format(slope,intercept))

print (title)

https://stackoverflow.com/questions/4172448/is-it-possible-to-break-a-long-line-to-multiple-lines-in-python

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 6/14

We can put the title back on.

Text(0.5, 1.0, 'The best fit line as a slope m=0.615 and intercept b=1.346\nbest
fit line linregress slope m=0.615 and intercept b=1.346 ')

But I think adding a textbox to the graph makes it look more professional

Sometimes when making a graph, instead of putting in a title it looks better to put in a text box

with just the details. It is a three step process to make a nice box. Scroll down this link and you

can see where I got the recipe from. http://matplotlib.org/users/recipes.html It is at the bottom

1. First you define the box by making a dictionary of the box properties. We ususally call it

props for the properties of the box.

In [47]: fig,ax=plt.subplots()

fig.set_size_inches(6,6) # I made a square graph

ax.scatter(x,y)

#find the stats

#plot the best fit line

x_fit=np.linspace(np.min(x),np.max(x))

ax.plot(x_fit,x_fit*stats_out[0]+stats_out[1])

ax.set_xlabel('x')

ax.set_ylabel('y')

title=('The best fit line as a slope m={:.3f} and intercept b={:.3f}'\

 .format(stats_out[0],stats_out[1])+

 '\nbest fit line linregress slope m={:.3f} and intercept b={:.3f} '\

 .format(slope,intercept))

ax.set_title(title)

Out[47]:

http://matplotlib.org/users/recipes.html

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 7/14

2. Then you make the text string you want in the box. for a linear equation you usually want

slope, interecept, r , and p-value

3. You then say where you want the information. This is within the ax properties since we will

put it into the graph. You tell it the relative location, Then you give it the text, somemore

information, and then the props

4. Also add the linregress to this cell to do everything in one place to make it clean

Text(0.05, 0.95, 'm=0.615\nb=1.346\nr^2=0.985\np=0.008')

2

In [49]: fig,ax=plt.subplots()

fig.set_size_inches(6,6) # I made a square graph

ax.scatter(x,y)

#Stats on the data

slope, intercept, r_value,p_value,stderr= stats.linregress(x,y)

#plot the best fit line

x_fit=np.linspace(np.min(x),np.max(x))

ax.plot(x_fit,x_fit*stats_out[0]+stats_out[1])

ax.set_xlabel('x')

ax.set_ylabel('y')

This is the code I added to get the box below with the normal graphing

props=dict(boxstyle='round',facecolor='wheat',alpha=0.5)

textstr='m={:.3f}\nb={:.3f}\nr^2={:.3f}\np={:.3f}'\

 .format(slope,intercept,r_value**2, p_value)

ax.text(0.05,0.95,textstr,transform=ax.transAxes\

 ,fontsize=10,verticalalignment='top',bbox=props)

Out[49]:

In []:

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 8/14

Class Assignment

Fit a line to the KNYC and KLGA data and plot it

Now can you go back and get the KNYC and KLGA weather data and see if they are correlated? I

would use your program and then compare to linregress. Remember to use np.array([]) to enter

the data as a numpy array. Also remember you need at least one float in your list to make it all

floats. I like the second graph with the box!

<matplotlib.text.Text at 0x15614fd0>

<matplotlib.text.Text at 0x9d05cf8>

In [3]:

Out[3]:

In [29]:

Out[29]:

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 9/14

What is a p-value?

Statisticians argue about p-values and what they exactly mean. We are going to do an exercise

to help you understand.

In my simplistic world I think of a p-value as the chance of the result happening by chance.

a p-value of 0.05 means that result could happen by chance 5% of the time. It sort of but not

quite means that the result is real 95% of the time.

a p-value of 0.01 means that result could happen by chance 1% of the time. It sort of but not

quite means that the result is real 99% of the time.

you usually see people writing p<0.05 when they want to show the relationship is siginificant.

We say it is significant because only 5% of the time it happens randomly.

This means if we randomly create data. 5% of the time we would get a p-value<0.05. 95% of the

time our results would look like junk. so lets do it!

Use the nump function random to get random numbers from 0 to 1. it is

np.random.random(size) and you give how many. lets do 50.

array([0.25275895, 0.03305665, 0.94104781, 0.6722305 , 0.23773632,

 0.93851915, 0.12961236, 0.10201882, 0.48071812, 0.49040787,

 0.75001889, 0.92054346, 0.93788928, 0.70639629, 0.02906303,

 0.70715162, 0.55801932, 0.75910762, 0.19028569, 0.03269578,

 0.13596112, 0.72398551, 0.65856306, 0.24053408, 0.81387377,

 0.60808716, 0.73752055, 0.79190437, 0.00365806, 0.93270819,

 0.12394915, 0.81827269, 0.61999088, 0.32774057, 0.87897003,

In [23]: np.random.random(50)

Out[23]:

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 10/14

 0.12372507, 0.91374782, 0.93088581, 0.87484 , 0.4256022 ,

 0.27847397, 0.15926549, 0.26533697, 0.89631707, 0.98672037,

 0.69397302, 0.13111585, 0.33728261, 0.02734482, 0.05421295])

Now make your x and y data each with 50 numbers

Now plot the data. Every time you run it your data will change. Run it a few times and see if the

points move around!

Now add the best fit line

In [24]: x=np.random.random(50)

y=np.random.random(50)

In [26]: x=np.random.random(50)

y=np.random.random(50)

fig,ax=plt.subplots()

fig.set_size_inches(6,6) # I made a square graph

ax.scatter(x,y)

slope, intercept, r_value,p_value,stderr= stats.linregress(x,y)

In [52]: x=np.random.random(50)

y=np.random.random(50)

fig,ax=plt.subplots()

fig.set_size_inches(6,6) # I made a square graph

ax.scatter(x,y)

#calculate the best fit line

slope, intercept, r_value,p_value,stderr= stats.linregress(x,y)

#plot the best fit line

x_fit=np.linspace(np.min(x),np.max(x))

ax.plot(x_fit,x_fit*slope+intercept)

ax.set_xlabel('x')

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 11/14

Text(0.05, 0.95, 'm=0.173\nb=0.465\nr^2=0.029\np=0.234')

Now rerun the cell and count how many times it takes you to get a p-value less than 0.05. Then

share with your breakout rooms It took me 27.

Now lets make the computer work for us. Think about this. We can ask the computer to make

the graph above 1000 times. Then we can ask how many times we got a p-value less than 0.05.

If it is random our answer should come about near but probably not exactly 50.

Now lets get rid of the graph and run the regression 1000 times and count how many times we

get a significant result

ax.set_ylabel('y')

This is the code I added to get the box below with the normal graphing

props=dict(boxstyle='round',facecolor='wheat',alpha=0.5)

textstr='m={:.3f}\nb={:.3f}\nr^2={:.3f}\np={:.3f}'\

 .format(slope,intercept,r_value**2,p_value)

ax.text(0.05,0.95,textstr,transform=ax.transAxes\

 ,fontsize=10,verticalalignment='top',bbox=props)

Out[52]:

In [58]: num_sig=0

for i in np.arange(1000):

 x=np.random.random(50)

 y=np.random.random(50)

 #calculate the best fit line

 slope, intercept, r_value,p_value,stderr= stats.linregress(x,y)

 if p_value<0.05:

 num_sig+=1

 print('Loop Number {} with a p_value of {}'.format(i,p_value))

print('I ran the for loop 1000 times and the \

p_value was less than 0.05 {} times'.format(num_sig))

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 12/14

Loop Number 14 with a p_value of 0.013768191249915141

Loop Number 32 with a p_value of 0.010325587131925263

Loop Number 48 with a p_value of 0.04998574928702603

Loop Number 58 with a p_value of 0.011613259947481674

Loop Number 108 with a p_value of 0.013265557228705446

Loop Number 109 with a p_value of 0.024282603849346614

Loop Number 126 with a p_value of 0.028149764263222903

Loop Number 148 with a p_value of 0.017215378221889874

Loop Number 151 with a p_value of 0.03744735571244542

Loop Number 221 with a p_value of 0.01693622522281629

Loop Number 222 with a p_value of 0.04672332087508179

Loop Number 232 with a p_value of 0.02885611323628464

Loop Number 239 with a p_value of 0.04558808012319081

Loop Number 262 with a p_value of 0.02341930929481531

Loop Number 268 with a p_value of 0.03989203780271019

Loop Number 293 with a p_value of 0.031158267479432997

Loop Number 299 with a p_value of 0.025012441646863497

Loop Number 309 with a p_value of 0.01960985651839358

Loop Number 312 with a p_value of 0.048462735182921955

Loop Number 322 with a p_value of 0.012209025333444236

Loop Number 335 with a p_value of 0.026063543920688576

Loop Number 353 with a p_value of 0.04974052001790181

Loop Number 360 with a p_value of 0.03118879397133239

Loop Number 363 with a p_value of 0.03397917786757127

Loop Number 377 with a p_value of 0.021867928879286385

Loop Number 410 with a p_value of 0.0074251904712731

Loop Number 464 with a p_value of 0.019827242843665004

Loop Number 476 with a p_value of 0.02309036284730668

Loop Number 544 with a p_value of 0.0473919089091389

Loop Number 546 with a p_value of 0.0016485145587271672

Loop Number 549 with a p_value of 0.025498539161222442

Loop Number 556 with a p_value of 0.04234503983696942

Loop Number 614 with a p_value of 0.04961071483080715

Loop Number 633 with a p_value of 0.042187600493885646

Loop Number 660 with a p_value of 0.035531013241171645

Loop Number 686 with a p_value of 0.030139802705080338

Loop Number 687 with a p_value of 0.011015467120926728

Loop Number 711 with a p_value of 0.004031008343914578

Loop Number 729 with a p_value of 0.033784059453014464

Loop Number 747 with a p_value of 0.04368869470636622

Loop Number 798 with a p_value of 0.025582023294943128

Loop Number 826 with a p_value of 0.025288038285842685

Loop Number 839 with a p_value of 0.04970719406984716

Loop Number 915 with a p_value of 0.005864660421576615

Loop Number 929 with a p_value of 0.023040943147541418

Loop Number 933 with a p_value of 0.0428739647262823

Loop Number 935 with a p_value of 0.03652889883984372

Loop Number 946 with a p_value of 0.04585836355056982

Loop Number 982 with a p_value of 0.025960097663030125

I ran the for loop 1000 times and the p_value was less than 0.05 49 times

So hopefully this helps you with a p-values. the p-value tells you how often the result may

happen randomly. So the lower the p-value the lower the probability of the result happening

randomly. Therefore you can "trust" the result more. But really you report the p-value so people

know how you are making your choice on the significance of the results. A lot of methods report

a p-value so you will be seeing this!

Foreshadowing.

In []:

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 13/14

If you are done early keep going and learn about polyfit. If not we will come back to this and

don't worry.

Polyfit is from numpy.

Polyfit will return us the m and b. The strength of polyfit is two fold. First you can do higher

order by changing the third parameter and also it makes it easy to fit your data.

array([0.61538462, 1.34615385])

So you could do second order. where you get the best fit y=a +bx+c

array([1.77953990e-16, 6.15384615e-01, 1.34615385e+00])

Now how can we get the fit?

[1.77953990e-16 6.15384615e-01 1.34615385e+00]

This is a cool polyfit function. Remember this as it can come in useful

 2

1.78e-16 x + 0.6154 x + 1.346

Now lets pass a value to eqn

7.500000000000015

array([-4.80769231, -4.55651491, -4.30533752, -4.05416013, -3.80298273,

 -3.55180534, -3.30062794, -3.04945055, -2.79827316, -2.54709576,

 -2.29591837, -2.04474097, -1.79356358, -1.54238619, -1.29120879,

 -1.0400314 , -0.788854 , -0.53767661, -0.28649922, -0.03532182,

 0.21585557, 0.46703297, 0.71821036, 0.96938776, 1.22056515,

 1.47174254, 1.72291994, 1.97409733, 2.22527473, 2.47645212,

 2.72762951, 2.97880691, 3.2299843 , 3.4811617 , 3.73233909,

 3.98351648, 4.23469388, 4.48587127, 4.73704867, 4.98822606,

 5.23940345, 5.49058085, 5.74175824, 5.99293564, 6.24411303,

 6.49529042, 6.74646782, 6.99764521, 7.24882261, 7.5])

Poly1d doesn't do everything we want. But if you need to fit a higher order equation and print

the equation it is really nice

In [30]: ?np.polyfit

In [31]: np.polyfit(x,y,1)

Out[31]:

x2

In [32]: np.polyfit(x,y,2)

Out[32]:

In [33]: fit=np.polyfit(x,y,2)

print (fit)

In [34]: eqn=np.poly1d(fit)

In [35]: print (eqn)

In [36]: eqn(10)

Out[36]:

In [37]: eqn(np.linspace(-10,10))

Out[37]:

10/1/21, 11:44 AM FitALine

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 14/14

Answer
I posted the answers in a seperate notebook. Don't cheat and look. Work through it.

In []:

In []:

