10/1/21, 11:44 AM

FitALine

Best Fit Line

today we are going to write our own code for fitting a line and then compare it to differnt
functions in python. We are going to take our math form Daniel C. Harris, Quantitative Chemical
Analysis pages 66 and 67. Python can fit a line for you. But it is good to do a few of these
functions by hand to see how they work.

To begin we are going to cheat and make our lives easier and use the numpy package. This
package lets us do some array operations really easily and we won't have to do for loops. | was
thinking of being mean and using all for loops. But lets take advantage of python. First lets
import numpy and see what we can do.

¢matplotlib inline

import numpy as np

import matplotlib.pyplot as plt
from scipy import stats

x=np.array([1.,3,4,61])
print (x)
type(x)

[1. 3. 4. 6.]

numpy .ndarray

So we could enter a list but instead of calling it a list we call it a numpy array. This is like a
supercharged list.

Now we can make the y

y=np.array([2,3,4,5])
Now this is where numpy gets really cool. you can multiply and add your lists. This is different
than array math if you have taken linear algebra. But we will be able to do that also.

print (x*y)

[2. 9. 16. 30.]
do you see what it just did? It multiplied elementwise!

print (x+y)
[3. 6. 8. 11.]
print (x-y)
[-1. 0. 0. 1.]
print (x/y)
[0.5 1. 1. 1.2]
print (x%y)

[1. 0. 0. 1.]
If you are doing linear algebra there are methods to do true matrix multiplication. For example

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false

1/14

10/1/21, 11:44 AM FitALine

the dot product.

print (np.dot(x,y))
57.0

print (np.sum(x))
14.0

print (len(x))

4

remember that tab is your friend. if you type np. and hit tab you will see a ton of functions we
can call

np.

What does our data look like?

fig,ax=plt.subplots|()
ax.scatter(x,y)
ax.set xlabel('x")
ax.set_ylabel('y")

Text(0, 0.5, 'y')

5.0 1]

454

40 .

= 3.5 1

3.0 1]

254

204 @

It is not a perfect line. So we need to fit a best fit line!

Now we can fit a line!!!!

| have now given you all the tools you need to figure out the best fit equation of a line.
Remember the best fit equation of the line is y=mx+b where m is the slope and b is the
intercept. We fit 2 points last time which define a line. When you have many points you have to
find the best fit. We can do that! To do the fit when you have multiple points you get the
equations

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 2/14

10/1/21, 11:44 AM FitALine

(nXx;y;—Xx; Zy;)
(n2(z})—(2z:)?)

m ==

5 (z?) Zyi— (Zziy;) X))

b = nE(2?)— (Sz;)?

remember x; means for each element in the list of x.
soinourcasexyg = 1,21 = 3,29 = 4,23 =6

if we sum up all of one list thatis Xx; =1+3+4+6 =14
n is the length of our list

So lets plot our x and y data, look at it and then fit it.

So go ahead and figure out your m and b and then plot the line on the graph.

<matplotlib.text.Text at 0x10bff9290>

5‘?19 best fit line as a slope m=0.615 and intercept b=1.346

50
45+
40+ *
= 35
30+ L]
251

201

15 i i i i i i
o 1 2 3 4 5 G 7

Now lets use Python to fit the line.
Two functions
1. linregress

2. Polyfit (not critical for now)

Linregress (short for linear regression)

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 3/14

10/1/21, 11:44 AM FitALine

| like linregress from scipy for my basic line fitting. the strength it has over polyfit is that it
returns a p-value and an r which you can convert into r2 along with the slope and intercept. Lets
learn about it!

?stats.linregress

The key is we give it an x and y and then it returns:

slope : float slope of the regression line
intercept : float intercept of the regression line
r-value : float correlation coefficient

p-value : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is
zero.

stderr : float Standard error of the estimate

We have talked about this some. But | want to say more explicitly here. In python when you call a
function it can return many things. It doesn't have to return one number. It can return an array or
multiple values. For linregress it returns 5 values. We can names these or put them in an array (|
use array and list semi-interchangeably, | apologize and | will try to fix this). HOW PYTHON CAN
RETURN MANY THINGS ON THE LEFT SIDE OF AN EQUAL SIGN IS WEIRD. Get used to it!

stats.linregress(x,Y)

LinregressResult(slope=0.6153846153846154, intercept=1.3461538461538458, rvalue=
0.9922778767136677, pvalue=0.007722123286332257, stderr=0.05439282932204183)

Why do | like stats.linregress? Becuase it gives us the r-value (square it and you have the r-
squared) and the p-value. How do these results compare against yours that you calculated?

But if you want to use your stats results set it equal to something, it will make a list and then you
can access it. Or you can set each item. so the two ways are.

First way. Set results equal to a list

stats_out=stats.linregress(x,y)

stats_out[0]

0.6153846153846154

stats_out

LinregressResult(slope=0.6153846153846154, intercept=1.3461538461538458, rvalue=
0.9922778767136677, pvalue=0.007722123286332257, stderr=0.05439282932204183)

We can give the output meaningful names!

slope, intercept, r value,p value,stderr= stats.linregress(x,y)

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 4/14

10/1/21, 11:44 AM FitALine

slope

0.6153846153846154

intercept
1.3461538461538458

We can give the output nonsensical names. Remember we control the computer and we are
naming them!

phineas, ferb, perry,candace,isabelle= stats.linregress(x,y)

print (ferb)

1.3461538461538458

so it is up to you on how you want to get to the data from a function like stats.linregress()

| just learned a cool trick that | like. You can also use dot notation with your linregress output!
This is nice!

stats_out=stats.linregress(x,y)
print (stats_out)

LinregressResult(slope=0.6153846153846154, intercept=1.3461538461538458, rvalue=
0.9922778767136677, pvalue=0.007722123286332257, stderr=0.05439282932204183)

But now you can use the names to get the results.

print (stats_out.slope)

0.6153846153846154

print (stats_out.intercept)

1.3461538461538458
| think this might be easier than using the array number or the names!

One thing | have problems with is long lines | want on multiple lines. For example sometimes |
like to define a long string and then use that string as a title. To have it go over multiple lines you
can use brackets. here is an example of a long string | made for a title. You can see me
accessing the results both ways. Plus | added a \n to break lines and python let me break up the
code on multiple lines since | was in a parantheses. Sometimes you can also add a \ to break the
lines to get a line continuation. see https://stackoverflow.com/questions/4172448/is-it-possible-
to-break-a-long-line-to-multiple-lines-in-python

title=('The best fit line as a slope m={:.3f} and intercept b={:.3f}'\
.format(stats _out[0],stats out[1l])+
'\nbest fit line linregress slope m={:.3f} and intercept b={:.3f} '\
.format (slope,intercept))

print (title)

The best fit line as a slope m=0.615 and intercept b=1.346
best fit line linregress slope m=0.615 and intercept b=1.346

Now lets fix up our graph!

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 5/14

https://stackoverflow.com/questions/4172448/is-it-possible-to-break-a-long-line-to-multiple-lines-in-python

10/1/21, 11:44 AM FitALine

We can put the title back on.

fig,ax=plt.subplots()
fig.set _size inches(6,6) # I made a square graph
ax.scatter(x,vy)

#find the stats

#plot the best fit line
x_fit=np.linspace(np.min(x),np.max(x))
ax.plot(x_fit,x fit*stats out[0]+stats out[1l])

ax.set xlabel('x")

ax.set _ylabel('y")

title=('The best fit line as a slope m={:.3f} and intercept b={:.3f}'\
.format(stats_out[0],stats_out[1])+
'\nbest fit line linregress slope m={:.3f} and intercept b={:.3f} '\
.format(slope,intercept))

ax.set_title(title)

Text (0.5, 1.0, 'The best fit line as a slope m=0.615 and intercept b=1.346\nbest
fit line linregress slope m=0.615 and intercept b=1.346 ')

The best fit line as a slope m=0.615 and intercept b=1.346
best fit line linregress slope m=0.615 and intercept b=1.346

5.0 4

454

40 L

= 3.5 4

3.0 1]

251

204

But | think adding a textbox to the graph makes it look more professional

Sometimes when making a graph, instead of putting in a title it looks better to put in a text box
with just the details. It is a three step process to make a nice box. Scroll down this link and you
can see where | got the recipe from. http://matplotlib.org/users/recipes.html It is at the bottom

1. First you define the box by making a dictionary of the box properties. We ususally call it
props for the properties of the box.

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall2 1/BigDataPython/FitALine.ipynb?download=false 6/14

http://matplotlib.org/users/recipes.html

10/1/21, 11:44 AM FitALine
2. Then you make the text string you want in the box. for a linear equation you usually want
slope, interecept, r2, and p-value

3. You then say where you want the information. This is within the ax properties since we will
put it into the graph. You tell it the relative location, Then you give it the text, somemore
information, and then the props

4. Also add the linregress to this cell to do everything in one place to make it clean

fig,ax=plt.subplots|()
fig.set size inches(6,6) # I made a square graph
ax.scatter(x,vy)

#Stats on the data
slope, intercept, r value,p value,stderr= stats.linregress(x,y)

#plot the best fit line
x_fit=np.linspace(np.min(x),np.max(x))
ax.plot(x_fit,x fit*stats out[0]+stats out[1l])

ax.set _xlabel('x")
ax.set_ylabel('y"')

This is the code I added to get the box below with the normal graphing
props=dict(boxstyle='round', facecolor='wheat',alpha=0.5)

textstr="m={:.3f}\nb={:.3£f}\n$r"2s$={:.3f}\np={:.3£} "'\
.format(slope,intercept,r value**2, p value)

ax.text(0.05,0.95,textstr,transform=ax.transAxes\
,fontsize=10,verticalalignment="'top', bbox=props)

Text(0.05, 0.95, 'm=0.615\nb=1.346\n$r"2$=0.985\np=0.008")

5.0 4

454

40

= 3.5 4

30 4

251

20

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall2 1/BigDataPython/FitALine.ipynb?download=false 7/14

10/1/21, 11:44 AM FitALine

Class Assignment

Fit a line to the KNYC and KLGA data and plot it

Now can you go back and get the KNYC and KLGA weather data and see if they are correlated? |
would use your program and then compare to linregress. Remember to use np.array([]) to enter
the data as a numpy array. Also remember you need at least one float in your list to make it all
floats. | like the second graph with the box!

<matplotlib.text.Text at 0x15614fd0>

The best fit line as a slope m=1.117 and intercept b=-12.385
bﬁSt fit line linregress slope m=1.117 and intercept b=-12.385

KLGA

<matplotlib.text.Text at 0x9d05cf8>

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false

8/14

10/1/21, 11:44 AM FitALine

(m=1.117 .
b=-12.385
ri=0.940

82

KLGA [°F)
=

78 : : : : :
82 84 86 83 90 92 o4

KNYC (°F)

What is a p-value?

Statisticians argue about p-values and what they exactly mean. We are going to do an exercise
to help you understand.

In my simplistic world | think of a p-value as the chance of the result happening by chance.

a p-value of 0.05 means that result could happen by chance 5% of the time. It sort of but not
quite means that the result is real 95% of the time.

a p-value of 0.01 means that result could happen by chance 1% of the time. It sort of but not
quite means that the result is real 99% of the time.

you usually see people writing p<0.05 when they want to show the relationship is siginificant.
We say it is significant because only 5% of the time it happens randomly.

This means if we randomly create data. 5% of the time we would get a p-value<0.05. 95% of the
time our results would look like junk. so lets do it!
Use the nump function random to get random numbers from O to 1. it is

np.random.random(size) and you give how many. lets do 50.

np.random.random(50)

array([0.25275895, 0.03305665, 0.94104781, 0.6722305 , 0.23773632,
0.93851915, 0.12961236, 0.10201882, 0.48071812, 0.49040787,
0.75001889, 0.92054346, 0.93788928, 0.70639629, 0.02906303,
0.70715162, 0.55801932, 0.75910762, 0.19028569, 0.03269578,
0.13596112, 0.72398551, 0.65856306, 0.24053408, 0.81387377,
0.60808716, 0.73752055, 0.79190437, 0.00365806, 0.93270819,
0.12394915, 0.81827269, 0.61999088, 0.32774057, 0.87897003,

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 9/14

10/1/21, 11:44 AM FitALine

0.12372507, 0.91374782, 0.93088581, 0.87484 , 0.4256022 ,
0.27847397, 0.15926549, 0.26533697, 0.89631707, 0.98672037,
0.69397302, 0.13111585, 0.33728261, 0.02734482, 0.05421295])

Now make your x and y data each with 50 numbers

x=np.random.random(50)
y=np.random.random(50)

Now plot the data. Every time you run it your data will change. Run it a few times and see if the
points move around!

x=np.random.random(50)
y=np.random.random(50)

fig,ax=plt.subplots()
fig.set _size inches(6,6) # I made a square graph

ax.scatter(x,vy)

slope, intercept, r value,p value,stderr= stats.linregress(x,y)

10 1 . [] &
. e *
s *®
* . .
0.5 4 . .
. ® -»
® . .
& []
06 [] L]
®
» * 3 []
* .
. .
04
* .
» ™
[I e .
0.2 1 .
o .
.®
T T T T T T
0.0 0z 04 0.6 0.8 10

Now add the best fit line

x=np.random.random(50)
y=np.random.random(50)

fig,ax=plt.subplots()
fig.set _size inches(6,6) # I made a square graph
ax.scatter(x,vy)

#calculate the best fit line
slope, intercept, r value,p value,stderr= stats.linregress(x,y)

#plot the best fit line
x_fit=np.linspace(np.min(x),np.max(x))
ax.plot(x_fit,x fit*slopet+intercept)

ax.set _xlabel('x")
localhost:8888/nbconvert/html/Documents/work-teaching/python/fall2 1/BigDataPython/FitALine.ipynb?download=false

10/14

10/1/21, 11:44 AM

FitALine

ax.set_ylabel('y"')

This is the code I added to get the box below with the normal graphing

props=dict (boxstyle='round', facecolor='wheat',alpha=0.5)
textstr="m={:.3£f}\nb={:.3f}\nSr"2$={:.3f}\np={:.3£} "\
.format(slope,intercept,r value**2,p value)
ax.text(0.05,0.95,textstr,transform=ax.transAxes\
,fontsize=10,verticalalignment="top',bbox=props)

Text(0.05, 0.95, 'm=0.173\nb=0.465\n$r"2$=0.029\np=0.234")
101 (me0173 o * ‘s ¢
b=0.465 []
F20.029 ® .
=234 |* * .

[]
b ™
[]

02 .

. *® .

. L]

[] . ®
0o L] L]
0.0 0.2 0.4 0.6 0.8 10

Now rerun the cell and count how many times it takes you to get a p-value less than 0.05. Then

share with your breakout rooms It took me 27.

Now lets make the computer work for us. Think about this. We can ask the computer to make
the graph above 1000 times. Then we can ask how many times we got a p-value less than 0.05.
If it is random our answer should come about near but probably not exactly 50.

Now lets get rid of the graph and run the regression 1000 times and count how many times we

get a significant result

num_sig=0

for i in np.arange(1000):
x=np.random.random(50)
y=np.random.random(50)

#calculate the best fit line

slope, intercept, r value,p value,stderr= stats.linregress(x,y)

if p value<0.05:
num_sig+=1

print('Loop Number {} with a p value of {}'.format(i,p_value))

print('I ran the for loop 1000 times and the \
p_value was less than 0.05 {} times'.format(num sig))

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false

11/14

10/1/21, 11:44 AM

Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop

I ran the for loop 1000 times and
So hopefully this helps you with a p-values. the p-value tells you how often the result may
happen randomly. So the lower the p-value the lower the probability of the result happening
randomly. Therefore you can "trust" the result more. But really you report the p-value so people
know how you are making your choice on the significance of the results. A lot of methods report

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

14

32

48

58

108
109
126
148
151
221
222
232
239
262
268
293
299
309
312
322
335
353
360
363
377
410
464
476
544
546
549
556
614
633
660
686
687
711
729
747
798
826
839
915
929
933
935
946
982

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

O 0000000000000 0000000000000 0000000000000

a

p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value
p_value

a p-value so you will be seeing this!

Foreshadowing.

FitALine

of 0.013768191249915141
of 0.010325587131925263
of 0.04998574928702603
of 0.011613259947481674

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

0.013265557228705446
0.024282603849346614
0.028149764263222903
0.017215378221889874
0.03744735571244542
0.01693622522281629
0.04672332087508179
0.02885611323628464
0.04558808012319081
0.02341930929481531
0.03989203780271019
0.031158267479432997
0.025012441646863497
0.01960985651839358
0.048462735182921955
0.012209025333444236
0.026063543920688576
0.04974052001790181
0.03118879397133239
0.03397917786757127
0.021867928879286385
0.0074251904712731
0.019827242843665004
0.02309036284730668
0.0473919089091389
0.0016485145587271672
0.025498539161222442
0.04234503983696942
0.04961071483080715
0.042187600493885646
0.035531013241171645
0.030139802705080338
0.011015467120926728
0.004031008343914578
0.033784059453014464
0.04368869470636622
0.025582023294943128
0.025288038285842685
0.04970719406984716
0.005864660421576615
0.023040943147541418
0.0428739647262823
0.03652889883984372
0.04585836355056982
0.025960097663030125

the p value was less than 0.05 49 times

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false

12/14

10/1/21, 11:44 AM FitALine
If you are done early keep going and learn about polyfit. If not we will come back to this and
don't worry.

Polyfit is from numpy.

?np.polyfit

Polyfit will return us the m and b. The strength of polyfit is two fold. First you can do higher
order by changing the third parameter and also it makes it easy to fit your data.

np.polyfit(x,y,1)
array([0.61538462, 1.34615385])

So you could do second order. where you get the best fit y=ax?+bx+c

np.polyfit(x,y,2)
array([1.77953990e-16, 6.15384615e-01, 1.34615385e+00])

Now how can we get the fit?
fit=np.polyfit(x,y,2)
print (fit)
[1.77953990e-16 6.15384615e-01 1.34615385e+00]

This is a cool polyfit function. Remember this as it can come in useful
egqn=np.polyld(fit)

print (eqn)

2
1.78e-16 x + 0.6154 x + 1.346

Now lets pass a value to egn

egn(10)

7.500000000000015

egn(np.linspace(-10,10))

array([-4.80769231, -4.55651491, -4.30533752, -4.05416013, -3.80298273,
-3.55180534, -3.30062794, -3.04945055, -2.79827316, -2.54709576,
-2.29591837, -2.04474097, -1.79356358, -1.54238619, -1.29120879,
-1.0400314 , -0.788854 , -0.53767661, -0.28649922, -0.03532182,

0.21585557, 0.46703297, 0.71821036, 0.96938776, 1.22056515,
1.47174254, 1.72291994, 1.97409733, 2.22527473, 2.47645212,
2.72762951, 2.97880691, 3.2299843 , 3.4811617 , 3.73233909,
3.98351648, 4.23469388, 4.48587127, 4.73704867, 4.98822606,
5.23940345, 5.49058085, 5.74175824, 5.99293564, 6.24411303,
6.49529042, 6.74646782, 6.99764521, 7.24882261, 7.5 1)

Poly1d doesn't do everything we want. But if you need to fit a higher order equation and print
the equation it is really nice

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 13/14

10/1/21, 11:44 AM FitALine

Answer

| posted the answers in a seperate notebook. Don't cheat and look. Work through it.

localhost:8888/nbconvert/html/Documents/work-teaching/python/fall21/BigDataPython/FitALine.ipynb?download=false 14/14

